题目内容

(1) 已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的外角平分线,交CB边的延长线于点D.

求证:BD=AB+AC.

(2)对于任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图2,请你写出线段AC、AB、BD之间的数量关系并加以证明.

(1)答案见解析;(2)DB=AB+AC. 【解析】试题分析:(1)如图,在AE上截取AF=AB,连接DF,先证明△ABD≌△AFD,可得DF=DB,∠DBA=∠DFA=90°,再利用等腰直角三角形的性质证得DF=FC,即可证得结论;(2)BD=AB+AC,如图,在AE上截取AF=AB,连接DF,先证明△ABD≌△AFD,可得DF=DB,∠DBA=∠DFA,,再利用三角形外角的性质和已知条件...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网