题目内容

如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.
考点:三角形中位线定理,全等三角形的判定与性质
专题:证明题
分析:取OB中点M,OC中点N,根据三角形中位线定理可得到DM∥OC,DM=
1
2
OC,DN∥OB,DN=
1
2
OB,再根据直角三角形斜边上的中线的性质得到QM=
1
2
OB,PN=
1
2
OC,再根据三角形外角的性质即可推出∠QMD=∠PND,从而利用SAS判定△QMD≌△DNP,根据全等三角形的对应的边相等即可证得结论.
解答:证明:如图,取OB中点M,OC中点N,连接MD,MQ,DN,PN.
∵D为BC的中点
∴DM∥OC,DM=
1
2
OC,DN∥OB,DN=
1
2
OB.
∵在Rt△BOQ和Rt△OCP中,QM=
1
2
OB,PN=
1
2
OC.
∴DM=PN,QM=DN.∠QMD=∠QMO+∠OMD=2∠ABO+∠FOB,
∠PND=∠PNO+∠OND=2∠ACO+∠EOC.
∵∠ABO=∠ACO,∠FOB=∠EOC,
∴∠QMD=∠PND.
∴△QMD≌△DNP,
∴DQ=DP.
点评:此题主要考查学生对三角形中位线定理及全等三角形的判定与性质的综合运用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网