ÌâÄ¿ÄÚÈÝ
13£®ÖªÊ¶±³¾°£º¹ýÖÐÐĶԳÆÍ¼ÐεĶԳÆÖÐÐĵÄÈÎÒâÒ»ÌõÖ±Ïß¶¼½«Æä·Ö³ÉÈ«µÈµÄÁ½¸ö²¿·Ö£®£¨1£©Èçͼ¢Ù£¬Ö±Ïßm¾¹ýƽÐÐËıßÐÎABCD¶Ô½ÇÏߵĽ»µãO£¬ÔòSËıßÐÎAEFB=SËıßÐÎDEFC£¨Ìî¡°£¾¡±¡°£¼¡±¡°=¡±£©£»
£¨2£©Èçͼ¢Ú£¬Á½¸öÕý·½ÐÎÈçͼËùʾ°Ú·Å£¬OΪСÕý·½ÐζԽÇÏߵĽ»µã£¬Çó×÷¹ýµãOµÄÖ±Ïß½«Õû¸öͼÐηֳÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£»
£¨3£©°Ë¸ö´óСÏàͬµÄÕý·½ÐÎÈçͼ¢ÛËùʾ°Ú·Å£¬Çó×÷Ö±Ïß½«Õû¸öͼÐηֳÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¨ÓÃÈýÖÖ·½·¨·Ö·Ö¸î£©£®
·ÖÎö £¨1£©¸ù¾Ý֪ʶ±³¾°¼´¿ÉÇó½â£»
£¨2£©ÏÈÕÒµ½Á½¸ö¾ØÐεÄÖÐÐÄ£¬È»ºó¹ýÖÐÐÄ×÷Ö±Ïß¼´¿É£»
£¨3£©ÏÈ·Ö³ÉÁ½¸ö¾ØÐΣ¬ÕÒµ½ÖÐÐÄ£¬È»ºó¹ýÖÐÐÄ×÷Ö±Ïß¼´¿É£®
½â´ð ½â£º£¨1£©Èçͼ¢Ù£¬Ö±Ïßm¾¹ýƽÐÐËıßÐÎABCD¶Ô½ÇÏߵĽ»µãO£¬ÔòSËıßÐÎAEFB=SËıßÐÎDEFC£»
£¨2£©ÈçͼËùʾ£º
£¨3£©ÈçͼËùʾ£º![]()
¹Ê´ð°¸Îª£º=£®
µãÆÀ ±¾Ì⿼²éÖÐÐĶԳƼ°¾ØÐεÄÐÔÖÊ£¬ÓÐÒ»¶¨ÄѶȣ¬×¢ÒâÕÆÎÕÖÐÐÄÓëÖÐÐĶԳƵãÖ®¼äµÄ¹ØÏµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®Èç¹û£¨4x3y+2x4y2£©¡ÂE=-2-xy£¬ÄÇôE=£¨¡¡¡¡£©
| A£® | -2x | B£® | 3x | C£® | -2x2 | D£® | -2x3y |
7£®°Ñº¯Êýy=3x+2µÄͼÏóÏòÏÂÆ½ÒÆ1¸öµ¥Î»³¤¶È£¬ËùµÃͼÏóµÄº¯Êý½âÎöʽÊÇ£¨¡¡¡¡£©
| A£® | y=3x+3 | B£® | y=3x-1 | C£® | y=3x+1 | D£® | y=3x+5 |
8£®
Èçͼ£¬ÔÚ¡÷ABCÖУ¬AC=BC£¬¡ÏBCA=90¡ã£¬µãEÊÇб±ßABÉϵÄÒ»µã£¬×÷EF¡ÍAB½»±ßBCÓÚµãFÁ¬½áEC£¬ÈôBE£ºEA=1£º2£¬Ôò¡ÏECFµÄÓàÏÒֵΪ£¨¡¡¡¡£©
| A£® | $\frac{2\sqrt{5}}{5}$ | B£® | $\frac{\sqrt{5}}{5}$ | C£® | $\sqrt{5}$ | D£® | -$\frac{\sqrt{5}}{5}$ |
18£®
Èçͼ£¬Ö±Ïßl1¡Îl2¡Îl3£¬Ö±ÏßAC·Ö±ð½»l1£¬l2£¬l3ÓÚµãA£¬B£¬C£»Ö±ÏßDF·Ö±ð½»l1£¬
l2£¬l3ÓÚµãD£¬E£¬F£®ACÓëDFÏཻÓÚµãH£¬ÇÒAH=2£¬HB=1£¬BC=5£¬Ôò$\frac{DE}{EF}$µÄֵΪ
£¨¡¡¡¡£©
l2£¬l3ÓÚµãD£¬E£¬F£®ACÓëDFÏཻÓÚµãH£¬ÇÒAH=2£¬HB=1£¬BC=5£¬Ôò$\frac{DE}{EF}$µÄֵΪ
£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | 2 | C£® | $\frac{2}{5}$ | D£® | $\frac{3}{5}$ |
5£®ÏÂÁи÷ʽÖУ¬ÕýÈ·µÄÊÇ £¨¡¡¡¡£©
| A£® | $¡À\sqrt{9}=¡À3$ | B£® | -£¨$\sqrt{2}$£©2=4 | C£® | $\root{3}{-9}=-3$ | D£® | $\sqrt{{{£¨-2£©}^2}}=-2$ |