题目内容

15.如图,四边形ABCD内接于⊙O,对角线AC、BD相交于点E,且AB=AC,BD平分∠ABC,AD、BC延长线交于点F.
(1)求证:∠ADB=∠CDF;
(2)求证:AB=CF.

分析 (1)先根据AB=AC得出∠ABC=∠ACB,再由圆周角定理得出∠ADB=∠ACB,根据圆内接四边形的性质得出∠CDF=∠ABC,进而可得出结论;
(2)根据角平分线的性质得出∠ABD=∠CBD,再由圆周角定理得出∠CBD=∠CAD,故可得出∠ABD=∠CAD.根据圆内接四边形的性质得出∠DCF=∠BAD,再由(1)可知∠ADB=∠CDF,故可得出∠F=∠ABD,所以∠F=∠CAD,故可得出AC=CF,进而得出结论.

解答 (1)证明:∵AB=AC,
∴∠ABC=∠ACB.
∵∠ADB与∠ACB是同弧所对的圆周角,
∴∠ADB=∠ACB.
∵∠CDF=∠ABC,
∴∠ADB=∠CDF;

(2)证明:∵BD平分∠ABC
∴∠ABD=∠CBD.
∵∠CBD=∠CAD,
∴∠ABD=∠CAD.
∵四边形ABCD是圆内接四边形,
∴∠DCF=∠BAD.
∵由(1)可知∠ADB=∠CDF,
∴∠F=∠ABD,
∴∠F=∠CAD,
∴AC=CF.
∵AB=AC,
∴AB=CF.

点评 本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网