题目内容
如图,∠AOB=90°,C在OB的延长线上,D为⊙O上一点,∠BAD=∠BDC.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为1,且OB=BC,求四边形AOBD的面积.
阅读理解题:
你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.
(1)阅读下列材料:
问题:利用一元一次方程将化成分数.
设 .
由,可知 ,
即 .(请你体会将方程两边都乘以10起到的作用)
可解得 ,即 .
填空:将直接写成分数形式为_____________ .
(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.
已知x1、x2是关于x的一元二次方程x2-(2m+3)x+m2=0的两个不相等的实数根,且满足x1+x2=m2,则m的值是( )
A. -1 B. 3 C. 3或-1 D. -3或1
如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为______.
如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
已知,点A、B、C在⊙O上,∠C=32°,请用无刻度的直尺作图.
(1)在图1中画出一个含58°角的直角三角形;
(2)点D在弦AB上,在图2中画出一个含58°角的直角三角形.
如图,等边△OAB和等边△BCD的顶点A、C分别在双曲线的图象上,若OA=1,则点C的坐标为____________.
若一个矩形的周长为34 cm,面积是70 cm2,要求它的边长,则可设一边长为x cm,则它的邻边长为________cm,可列出方程为________,它的两条邻边的边长分别为________.
如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;
(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;
(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.