题目内容

17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为$\widehat{BD}$的中点.若∠A=40°,则∠B=70度.

分析 首先连接BD,由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB的度数,继而求得∠ABD的度数,由圆的内接四边形的性质,求得∠C的度数,然后由点C为$\widehat{BD}$的中点,可得CB=CD,即可求得∠CBD的度数,继而求得答案.

解答 解:连接BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠A=40°,
∴∠ABD=90°-∠A=50°,∠C=180°-∠A=140°,
∵点C为$\widehat{BD}$的中点,
∴CD=CB,
∴∠CBD=∠CDB=20°,
∴∠ABC=∠ABD+∠CBD=70°.
故答案为:70°.

点评 此题考查了圆周角定理、圆的内接四边形的性质以及弧与弦的关系.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网