题目内容

18.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是(2×3n-1,0).

分析 根据直线OBn的解析式以及等腰直角三角形的性质即可得出部分线段AnBn的长,根据长度的变化即可找出变化规律“AnBn=4×3n-1(n为正整数)”,再根据OAn=$\frac{1}{2}$AnBn,即可得出点An的坐标.

解答 解:∵点B1、B2、B3、…、Bn在直线y=2x的图象上,
∴A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,…,
∴AnBn=4×3n-1(n为正整数).
∵OAn=$\frac{1}{2}$AnBn
∴点An的坐标为(2×3n-1,0).
故答案为:(2×3n-1,0).

点评 本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质以及规律型中点的坐标,解题的关键是找出线段AnBn的变化规律“AnBn=4×3n-1(n为正整数)”.本题属于中档题,难度不大,解决该题型题目时,结合一次函数图象上点的坐标特征以及等腰直角三角形的性质找出线段的变化规律是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网