题目内容
8.已知实数a,b,c满足:|a-b|=5,|b-c|=7,则|a-c|=2或12.分析 根据绝对值性质得出a-b=5或a-b=-5,b-c=7或b-c=-7,从而罗列出所有情况:$\left\{\begin{array}{l}{a-b=5}\\{b-c=7}\end{array}\right.$或$\left\{\begin{array}{l}{a-b=5}\\{b-c=-7}\end{array}\right.$或$\left\{\begin{array}{l}{a-b=-5}\\{b-c=7}\end{array}\right.$或$\left\{\begin{array}{l}{a-b=-5}\\{b-c=-7}\end{array}\right.$,上下两式相加可得a-c,进而得出答案.
解答 解:∵|a-b|=5,|b-c|=7,
∴a-b=5或a-b=-5,b-c=7或b-c=-7,
则$\left\{\begin{array}{l}{a-b=5}\\{b-c=7}\end{array}\right.$或$\left\{\begin{array}{l}{a-b=5}\\{b-c=-7}\end{array}\right.$或$\left\{\begin{array}{l}{a-b=-5}\\{b-c=7}\end{array}\right.$或$\left\{\begin{array}{l}{a-b=-5}\\{b-c=-7}\end{array}\right.$,
上下两式相加可得a-c=12或a-c=-2或a-c=2或a-c=-12,
即|a-c|=2或12,
故答案为:2或12.
点评 本题主要考查绝对值,熟练掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零是解题的关键.
| A. | 越来越小 | B. | 越来越大 | C. | 不变 | D. | 先变大后变小 |
| A. | $\frac{3}{2}\sqrt{3}$ | B. | $3\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | 3 |
| A. | 1 | B. | -1 | C. | -2 | D. | 0 |