题目内容

19.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航,如图,在一次巡航过程中,巡航飞机飞行高度为2274米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1400米到达B点后测得F点俯角为45°,请据此计算钓鱼岛的最高海拔高度.(结果保留根号)

分析 设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根据AC-BC=1200,求得x的值,用h-x即可求得最高海拔.

解答 解:设CF=x,
在Rt△ACF和Rt△BCF中,
∵∠BAF=30°,∠CBF=45°,
∴BC=CF=x,$\frac{CF}{AC}$=tan30°,
即AC=$\sqrt{3}$x,
∵AC-BC=1400米,
∴$\sqrt{3}$x-x=1400,
解得:x=700($\sqrt{3}$+1),
则DF=h-x=2274-700($\sqrt{3}$+1)=(1574-700$\sqrt{3}$)(米).
答:钓鱼岛的最高海拔高度约(1574-700$\sqrt{3}$)米.

点评 本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形求出AC、BC的长度,难度一般.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网