题目内容
6.设p、q为不相等的正整数,且关于x的方程x2-px+q=0和x2-qx+p=0的根都是正整数,则|p-q|=( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据题意设方程x2-px+q=0的两个整数根分别为x1、x2且x1≤x2,方程x2-qx+p=0的两个整数根分别为x3、x4且x3≤x4,因为p、q、x1、x2、x3、x4都是正整数,由(x1-1)(x2-1)+(x3-1)(x4-1)=2可以得出三种情形,分别讨论即可得到答案.
解答 解:设方程x2-px+q=0的两个整数根分别为x1、x2且x1≤x2,方程x2-qx+p=0的两个整数根分别为x3、x4且x3≤x4,
则有:x1+x2=p,x1x2=q,x3+x4=q,x3x4=p,
∵p、q、x1、x2、x3、x4都是正整数,
∴(x1-1)(x2-1)+(x3-1)(x4-1)=(q-p+1)+(p-q+1)=2,
∴(x1-1)(x2-1)=0,(x3-1)(x4-1)=2,
或∴(x1-1)(x2-1)=1,(x3-1)(x4-1)=1,
或∴(x1-1)(x2-1)=2,(x3-1)(x4-1)=0,
由(x1-1)(x2-1)=0,(x3-1)(x4-1)=2得x1=x2=1,x3=2,x4=3,
∴p=6、q=5,
∴|p-q|=1
由(x1-1)(x2-1)=1,(x3-1)(x4-1)=1得x1=x2=x3=x4=2
∴p=q=4(不合题意舍弃)
由(x1-1)(x2-1)=2,(x3-1)(x4-1)=0得x1=2,x2=,3,x3=x4=1,
∴p=5、q=6,
∴|p-q|=1
综上所述|p-q|=1
故选A.
点评 本题考查根与系数的关系、有关正整数根的概念、灵活求方程的整数解是解决这个题目的关键.
练习册系列答案
相关题目
16.
如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,AB=2,AD=4,点M,点N分别在边BC,CD上,则△AMN周长的最小值为( )
| A. | 3$\sqrt{7}$ | B. | 4$\sqrt{7}$ | C. | 2$\sqrt{7}$+6 | D. | 11 |
11.设a,b,c分别是△ABC的边长,若∠B=2∠A,则下列关系是成立的是( )
| A. | $\frac{a}{b}$$>\frac{a+b}{a+b+c}$ | B. | $\frac{a}{b}$$<\frac{a+b}{a+b+c}$ | C. | $\frac{a}{b}$=$\frac{a+b}{a+b+c}$ | D. | 无法确定 |