题目内容

2.解方程组:
(1)$\left\{\begin{array}{l}{\frac{2(x-y)}{3}-\frac{x+y}{4}=-1}\\{3(x+y)-2(x-y)=6}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x-y+2z=-1}\\{4x+y+z=5}\\{x-2y-z=-2}\end{array}\right.$.

分析 (1)把x+y和x-y看做一个整体,再解答即可;
(2)先消去z后,再解二元一次方程组即可.

解答 解:(1)设x+y=a,x-y=b,原方程可化为:$\left\{\begin{array}{l}{\frac{2b}{3}-\frac{a}{4}=-1①}\\{3a-2b=6②}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=\frac{4}{3}}\\{b=-1}\end{array}\right.$,
即:$\left\{\begin{array}{l}{x+y=\frac{4}{3}}\\{x-y=-1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=\frac{1}{6}}\\{y=\frac{7}{6}}\end{array}\right.$,
(2)$\left\{\begin{array}{l}{3x-y+2z=-1①}\\{4x+y+z=5②}\\{x-2y-z=-2③}\end{array}\right.$,
②+③得:5x-y=3④,
①+②×2得:5x-5y=-5⑤,
把④代入⑤得:x=1,
把x=1代入④得:y=2,
把x=1,y=2代入①得:z=-1,
所以方程组的解是:$\left\{\begin{array}{l}{x=1}\\{y=2}\\{z=-1}\end{array}\right.$.

点评 本题考查了解三元一次方程组,解题的关键是掌握消元思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网