题目内容

3.如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.

分析 首先利用全等三角形的判定方法得出△AEF≌△DEB(AAS),进而得出AF=BD,再利用一组对边平行且相等的四边形是平行四边形进而得出答案.

解答 证明:∵AF∥BC,∴∠AFE=∠EBD.  
在△AEF和△DEB中
∵$\left\{\begin{array}{l}{∠AFE=∠DBE}\\{∠FEA=∠BED}\\{AE=DE}\end{array}\right.$,
∴△AEF≌△DEB(AAS).            
∴AF=BD.                   
∴AF=DC.
又∵AF∥BC,
∴四边形ADCF为平行四边形.

点评 此题主要考查了平行四边形的判定以及全等三角形的判定与性质,得出△AEF≌△DEB是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网