题目内容

12.如图,正方形ABCD的对角线相交于点O,正方形EFGO绕点旋转,若两个正方形的边长相等,则两个正方形的重合部分的面积(  )
A.由小变大B.由大变小
C.始终不变D.先由大变小,然后又由小变大

分析 根据正方形的性质得出OB=OC,∠OBC=∠OCD=45°,∠BOC=∠EOG=90°,推出∠BON=∠MOC,证出△OBN≌△OCM.

解答 解:重叠部分面积不变,总是等于正方形面积的$\frac{1}{4}$.
理由如下:
∵四边形ABCD和四边形OEFG都是正方形,
∴OB=OC,∠OBC=∠OCD=45°,∠BOC=∠EOG=90°,
∴∠BON=∠MOC.
在△OBN与△OCM中,
$\left\{\begin{array}{l}{∠OBC=∠OCD}\\{OB=OC}\\{∠BON=∠MOC}\end{array}\right.$,
∴△OBN≌△OCM(ASA),
∴四边形OMCN的面积等于三角形BOC的面积,
即重叠部分面积不变,总是等于正方形面积的$\frac{1}{4}$.
故选C.

点评 本题考查对正方形的性质,全等三角形的性质和判定等知识点的理解和掌握,能推出四边形OMCN的面积等于三角形BOC的面积是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网