题目内容
16.下列点中,位于函数y=$\frac{2}{x}$图象上的是( )| A. | (1,2) | B. | (1,$\frac{1}{2}$) | C. | (1,1) | D. | (2,$\frac{1}{2}$) |
分析 把点的坐标代入函数解析式,看看左边和右边是否相等即可.
解答 解:A、把(1,2)代入y=$\frac{2}{x}$得:左边=右边,所以点(1,2)在函数y=$\frac{2}{x}$的图象上,故本选项正确;
B、把(1,$\frac{1}{2}$)代入y=$\frac{2}{x}$得:左边≠右边,所以点(1,$\frac{1}{2}$)不在函数y=$\frac{2}{x}$的图象上,故本选项错误;
C、把(1,1)代入y=$\frac{2}{x}$得:左边≠右边,所以点(1,1)不在函数y=$\frac{2}{x}$的图象上,故本选项错误;
D、把(2,$\frac{1}{2}$)代入y=$\frac{2}{x}$得:左边≠右边,所以点(2,$\frac{1}{2}$)不在函数y=$\frac{2}{x}$的图象上,故本选项错误;
故选A.
点评 本题考查了反比例函数图象上点的坐标特征的应用,能理解题意是解此题的关键.
练习册系列答案
相关题目
4.已知A(1,y1),B(2,y2)两点在反比例函数y=$\frac{5+2m}{x}$图象上,若y1<y2,则实数m的取值范围是( )
| A. | m>0 | B. | m<0 | C. | m$>-\frac{5}{2}$ | D. | m$<-\frac{5}{2}$ |