题目内容

18.如图,在Rt△ABC中,∠B=90°,AC=120cm,∠C=30°,点D从点C出发沿CA方向以8cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以4cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

分析 (1)根据时间和速度表示出AE和CD的长,利用30°所对的直角边等于斜边的一半求出DF的长为4t,则AE=DF;
(2)根据(1)的结论可以证明四边形AEFD为平行四边形,如果四边形AEFD能够成为菱形,则必有邻边相等,则AE=AD,列方程求出即可;
(3)当△DEF为直角三角形时,有三种情况:①当∠EDF=90°时,如图3,②当∠DEF=90°时,如图4,
③当∠DFE=90°不成立;分别找一等量关系列方程可以求出t的值.

解答 证明:(1)由题意得:AE=4t,CD=8t,
∵DF⊥BC,
∴∠CFD=90°,
∵∠C=30°,
∴DF=$\frac{1}{2}$CD=$\frac{1}{2}$×8t=4t,
∴AE=DF;
(2)四边形AEFD能够成为菱形,理由是:
由(1)得:AE=DF,
∵∠DFC=∠B=90°,
∴AE∥DF,
∴四边形AEFD为平行四边形,
若?AEFD为菱形,则AE=AD,
∵AC=120,CD=8t,
∴AD=120-8t,
∴4t=120-8t,
t=10,
∴当t=10时,四边形AEFD能够成为菱形;
(3)分三种情况:
①当∠EDF=90°时,如图3,
则四边形DFBE为矩形,
∴DF=BE=4t,
∵AB=$\frac{1}{2}$AC=60,AE=4t,
∴4t=60-4t,
t=$\frac{15}{2}$,
②当∠DEF=90°时,如图4,
∵四边形AEFD为平行四边形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
在Rt△ADE中,∠A=60°,AE=4t,
∴AD=2t,
∴AC=AD+CD,
则120=2t+8t,
t=12,
③当∠DFE=90°不成立;
综上所述:当t为$\frac{15}{2}$或12时,△DEF为直角三角形.

点评 本题是四边形的综合题,考查了平行四边形、菱形、矩形的性质和判定,也是运动型问题,难度不大,是常出题型;首先要表示出两个动点在时间t时的路程,弄清动点的运动路径,再根据其运动所形成的特殊图形列式计算;同时,所构成的直角三角形因为直角顶点不确定,所以要分情况进行讨论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网