题目内容

如图,Rt△ABC中,∠ACB=90°,D是AB上的一点,过D作DE⊥AB交AC于点E,CE=DE.连接CD交BE于点F.
(1)求证:BC=BD;
(2)若点D为AB的中点,求∠AED的度数.
考点:全等三角形的判定与性质
专题:
分析:(1)直接证明Rt△DEB≌Rt△CEB,即可解决问题.
(2)首先证明△ADE≌△BDE,进而证明∠AED=∠DEB=∠CEB,即可解决问题.
解答:证明:(1)∵DE⊥AB,∠ACB=90°,
∴△DEB与△CEB都是直角三角形,
在△DEB与△CEB中,
EB=EB
DE=CE

∴Rt△DEB≌Rt△CEB(HL),
∴BC=BD.
(2)∵DE⊥AB,
∴∠ADE=∠BDE=90°;
∵点D为AB的中点,
∴AD=BD;
在△ADE与△BDE中,
AD=BD
∠ADE=∠BDE
DE=DE

∴△ADE≌△BDE(SAS),
∴∠AED=∠DEB;
∵△DEB≌△CEB,
∴∠CEB=∠DEB,
∴∠AED=∠DEB=∠CEB;
∵∠AED+∠DEB+∠CEB=180°,
∴∠AED=60°.
点评:该命题以三角形为载体,以考查全等三角形的判定及其应用为核心构造而成;解题的关键是灵活运用全等三角形的判定及其性质,来分析、判断或推理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网