题目内容

8.观察下列各式:
$\frac{2}{1×3}$=$\frac{1}{1}$-$\frac{1}{3}$;
$\frac{2}{2×4}$=$\frac{1}{2}$-$\frac{1}{4}$;
$\frac{2}{3×5}$=$\frac{1}{3}$-$\frac{1}{5}$;

请利用你所得结论,化简代数式:$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{n(n+2)}$(n≥3且n为整数),其结果为$\frac{3{n}^{2}+5n}{4(n+1)(n+2)}$.

分析 根据所列的等式找到规律$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),由此计算$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{n(n+2)}$的值.

解答 解:∵$\frac{2}{1×3}$=$\frac{1}{1}$-$\frac{1}{3}$,
$\frac{2}{2×4}$=$\frac{1}{2}$-$\frac{1}{4}$,
$\frac{2}{3×5}$=$\frac{1}{3}$-$\frac{1}{5}$,

∴$\frac{2}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{n(n+2)}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3{n}^{2}+5n}{4(n+1)(n+2)}$.
故答案是:$\frac{3{n}^{2}+5n}{4(n+1)(n+2)}$..

点评 此题主要考查了数字变化类,此题在解答时,看出的是左右数据的特点是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网