题目内容

如图,已知抛物线y=ax²﹣2ax+3(a≠0),与x轴交于A、B两点,与y轴交于点C,若OB=3OA.

(1)求抛物线的解析式;

(2)连接BC,点P、点Q是第一象限的抛物线上不同的两点,是否存在这样的P点,使得恒成立?若存在,请求P点的坐标,若不存在,请说明理由;

(3)如图2,D为抛物线的对称轴与x轴的交点,M为线段OC上一点,过点M作直线l交抛物线于E、F两点,连接AE、OE、BF、DF若△AEO∽△DFB,求M点的坐标.

(1)y=﹣x²+2x+3;(2)P;(3)(0, ). 【解析】试题分析:(1)利用韦达定理求二次函数解析式.(2)联立一次函数和二次函数求解.(3)设EF(带k)的函数,与一元二次方程联立,韦达定理,设而不求,利用相似求出k的关系,求出k的值,也就是求出EF函数的表达式,令x=0,求出M坐标. 试题解析: 【解析】 ⑴设A(x1,0),B(x2,0), 则x1、x2是...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网