题目内容
考点:梯形,相似三角形的判定与性质
专题:证明题
分析:设△AOB的面积为x,△DOC的面积为y,证△AOD∽△COB,求出
=
=
,推出
=
=
,
=
=
,求出x=pq,y=pq,即可得出答案.
| AO |
| OC |
| DO |
| OB |
| q |
| p |
| S△AOD |
| S△AOB |
| DO |
| OB |
| q |
| p |
| S△AOD |
| S△DOC |
| AO |
| OC |
| q |
| p |
解答:证明:设△AOB的面积为x,△DOC的面积为y,
∵AD∥BC,
∴△AOD∽△COB,
∵S△OBC=p2,S△OAD=q2,
∴
=
=
,
∴
=
=
,
=
=
,
∴x=pq,y=pq,
∴S四边形ABCD=S△AOB+S△BOC+S△DOC+S△AOD=pq+p2+pq+q2=(p+q)2.
∵AD∥BC,
∴△AOD∽△COB,
∵S△OBC=p2,S△OAD=q2,
∴
| AO |
| OC |
| DO |
| OB |
| q |
| p |
∴
| S△AOD |
| S△AOB |
| DO |
| OB |
| q |
| p |
| S△AOD |
| S△DOC |
| AO |
| OC |
| q |
| p |
∴x=pq,y=pq,
∴S四边形ABCD=S△AOB+S△BOC+S△DOC+S△AOD=pq+p2+pq+q2=(p+q)2.
点评:本题考查了相似三角形的性质和判定,三角形的面积的应用,解此题的关键是求出△ABO和△DCO的面积.
练习册系列答案
相关题目