题目内容
19.| A. | $\frac{\sqrt{2}+1}{2}$ | B. | $\frac{\sqrt{2}-1}{2}$ | C. | $\frac{3+2\sqrt{3}}{6}$ | D. | $\frac{3-2\sqrt{3}}{6}$ |
分析 当正六边形EFGHIJ的边长最大时,要使AE最小,六边形对角线EH与正方形对角线AC重合就可解决问题.
解答 解:如图所示,当EH=AB时,正六边形自由旋转且始终在正方形里,此时正六边形的边长最大,再当EH与正方形对角线AD重合时,AE最小;
∵正方形ABCD的边长为1;![]()
∴AC=$\sqrt{2}$,
∴EH=1,
∴AE=$\frac{\sqrt{2}-1}{2}$,
则AE的最小值为AE=$\frac{\sqrt{2}-1}{2}$.
故选:B.
点评 本题考查了正多边形的性质与运动的轨迹问题,解决本题的关键是首先找到正六边形的边长最大时正六边形在正方形内的位置,再旋转正六边形使得AE最小.
练习册系列答案
相关题目
7.A、B两乡分别由大米200吨、300吨.现将这些大米运至C、D两个粮站储存.已知C粮站可储存240吨,D粮站可储存260吨,从A乡运往C、D两处的费用分别为每吨20元和25元,B乡运往C、D两处的费用分别为每吨15元和18元.设A乡运往C粮站大米x吨.A、B两乡运往两个粮站的运费分别为yA、yB元.
(1)请填写下表,并求出yA、yB与x的关系式:
(2)试讨论A、B乡中,哪一个的运费较少;
(3)若B乡比较困难,最多只能承受4830元费用,这种情况下,运输方案如何确定才能使总运费最少?最少的费用是多少?
(1)请填写下表,并求出yA、yB与x的关系式:
| C站 | D站 | 总计 | |
| A乡 | x吨 | 200吨 | |
| B乡 | 300吨 | ||
| 总计 | 240吨 | 260吨 | 500吨 |
(3)若B乡比较困难,最多只能承受4830元费用,这种情况下,运输方案如何确定才能使总运费最少?最少的费用是多少?
9.
在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A,作正方形A2B2C2C1,按这样的规律下去,第2012个正方形的面积为( )
| A. | 5•($\frac{3}{2}$)2010 | B. | 5•($\frac{3}{2}$)4022 | C. | 5•($\frac{9}{4}$)2012 | D. | 5•($\frac{9}{4}$)2010 |