题目内容

15.如图,已知第一象限内的点A在反比例函数y=$\frac{2}{x}$上,第二象限的点B在反比例函数y=$\frac{k}{x}$上,且OA⊥OB,tanA=$\frac{1}{3}$,则k的值为-$\frac{2}{9}$.

分析 作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.

解答 解:作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,
则∠BOD+∠OBD=90°,
∵OA⊥OB,
∴∠BOD+∠AOC=90°,
∴∠BOD=∠AOC,
∴△OBD∽△AOC,
∴$\frac{S△OBD}{S△AOC}$=($\frac{OB}{OA}$)2=(tanA)2=$\frac{1}{9}$,
又∵S△AOC=$\frac{1}{2}$×2=1,
∴S△OBD=$\frac{1}{9}$,
∴k=-$\frac{2}{9}$.
故答案为:-$\frac{2}{9}$.

点评 本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网