题目内容

6.解方程组:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{{x}^{2}-3xy+2{y}^{2}=0}\end{array}\right.$.

分析 首先根据x2-3xy+2y2=0,判断出x=y,或x=2y;然后把x=y,或x=2y代入x2+y2=10,求出方程组$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{{x}^{2}-3xy+2{y}^{2}=0}\end{array}\right.$的解是多少即可.

解答 解:∵x2-3xy+2y2=0,
∴(x-y)(x-2y)=0,
∴x=y,或x=2y;
(1)当x=y时,
可得2x2=10,
∴x=$±\sqrt{5}$,y=$±\sqrt{5}$;
(2)当x=2y时,
可得5y2=10,
∴y=$±\sqrt{2}$,x=$±2\sqrt{2}$;
∴方程组:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=10}\\{{x}^{2}-3xy+2{y}^{2}=0}\end{array}\right.$的解是:
$\left\{\begin{array}{l}{x=\sqrt{5}}\\{y=\sqrt{5}}\end{array}\right.,\left\{\begin{array}{l}{x=-\sqrt{5}}\\{y=-\sqrt{5}}\end{array}\right.,\left\{\begin{array}{l}{x=2\sqrt{2}}\\{y=\sqrt{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2\sqrt{2}}\\{y=-\sqrt{2}}\end{array}\right.$.

点评 此题主要考查了二元二次方程的求解,要熟练掌握求解的方法,解答此题的关键是根据x2-3xy+2y2=0,判断出x=y,或x=2y.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网