题目内容

10.如图,在?ABCD中,E为BC上的一点,且AE与DE分别平分∠BAD和∠ADC
(1)求证:AE⊥DE;
(2)设以AD为直径的半圆交AB于F,DF交AE于G,已知CD=5,AE=8,求tan∠BAE的值.

分析 (1)根据是ABCD平行四边形,得出AB∥CD,则∠BAD+∠ADC=180°,又根据AE、DE是∠BAD、∠ADC的角平分线,得出∠DAE+∠ADE=90°,即可得出AE⊥DE;
(2)由于AD∥BC,AE是角平分线,容易得∠BAE=∠BEA,那么AB=BE=CD=5,同理有CE=CD=5,容易得出AD=BC=BE+CE=10,在Rt△ADE中,利用勾股定理可求DE,由于AD是直径,所以tan∠FAG=$\frac{FG}{AF}$,而∠FAG=∠DAE,于是$\frac{FG}{AF}$=$\frac{DE}{AE}$,即可求解.

解答 解:(1)证明:在平行四边形ABCD中,AB∥CD,
∴∠BAD+∠ADC=180°.                     
又∵AE、DE平分∠BAD、∠ADC,
∴∠DAE+∠ADE=90°,
∴∠AED=90°,
∴AE⊥DE.               

(2)在平行四边形ABCD中,AD∥BC,AB=CD=5,AD=BC,
∴∠DAE=∠BEA.                        
又∵∠DAE=∠BAE,
∴∠BEA=∠BAE,
∴BE=AB=5.                           
同理EC=CD=5.
∴AD=BC=BE+EC=10.                       
在Rt△AED中,DE=$\sqrt{A{D}^{2}-A{E}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6.
又∵AE是∠BAD的角平分线,
∴∠FAG=∠DAE.
∵AD是直径,
∴∠AFD=90°,
∴tan∠FAG=$\frac{FG}{AF}$,
∴$\frac{FG}{AF}$=tan∠DAE=$\frac{DE}{AE}$=$\frac{6}{8}$=$\frac{3}{4}$,
∴tan∠BAE=$\frac{3}{4}$.

点评 本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,角平分线的定义,熟练掌握各定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网