ÌâÄ¿ÄÚÈÝ

5£®Èç¹ûÒ»¸öÈý½ÇÐÎÓÐÒ»±ßÉϵÄÖÐÏßÓëÕâ±ßµÄ³¤ÏàµÈ£¬ÄÇô³ÆÕâ¸öÈý½ÇÐÎΪ¡°ºÍгÈý½ÇÐΡ±£®
£¨1£©ÇëÓÃÖ±³ßºÍÔ²¹æÔÚͼ1Öл­Ò»¸öÒÔÏß¶ÎABΪһ±ßµÄ¡°ºÍгÈý½ÇÐΡ±£»
£¨2£©Èçͼ2£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬AB=$\sqrt{7}$£¬BC=$\sqrt{3}$£¬ÇëÄãÅжϡ÷ABCÊÇ·ñÊÇ¡°ºÍгÈý½ÇÐΡ±£¿Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©Èçͼ3£¬ÒÑÖªÕý·½ÐÎABCDµÄ±ß³¤Îª1£¬¶¯µãM£¬N´ÓµãAͬʱ³ö·¢£¬ÒÔÏàͬËÙ¶È·Ö±ðÑØÕÛÏßAB-BCºÍAD-DCÏòÖÕµãCÔ˶¯£¬¼ÇµãM¾­¹ýµÄ·³ÌΪS£¬µ±¡÷AMNΪ¡°ºÍгÈý½ÇÐΡ±Ê±£¬ÇóSµÄÖµ£®

·ÖÎö £¨1£©È¡ABµÄÖеãO£¬ÒÔOΪԲÐÄ£¬ÒÔABΪ°ë¾¶»­Ô²£¬ÔÚÔ²ÉÏÈÎÒâȡһµãC£¨µãE¡¢F³ýÍ⣩£¬¹¹½¨Èý½ÇÐÎABC£¬¿ÉµÃ·ûºÏÌõ¼þµÄÈý½ÇÐΣ»
£¨2£©×÷ÖÐÏßBD£¬·Ö±ðÇóBDºÍACΪ2£¬¿ÉµÃ½áÂÛ£»
£¨3£©ÒòΪµãMÔÚABÉÏʱ£¬¡÷AMNÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬²»¿ÉÄÜÊÇ¡°ºÍгÈý½ÇÐΡ±£¬
ËùÒÔ·ÖÒÔÏÂÁ½ÖÖÇé¿öÌÖÂÛ£º
£¨¢ñ£©µ±µ×±ßMNµÄÖÐÏßAE=MNʱ£¬Èçͼ3£¬¸ù¾ÝAE=MN£¬ÁÐʽµÃsµÄÖµ£»
£¨¢ò£©µ±ÑüAMÓëËüµÄÖÐÏßNGÏàµÈ£¬¼´AM=GN=ANʱ£¬¸ù¾Ýtan¡ÏHMN=$\frac{HN}{MH}$=$\frac{\sqrt{15}}{3}$£»tan¡ÏAME=$\frac{AE}{ME}$=$\frac{s}{2-s}$£¬ÁÐʽ¿ÉµÃsµÄÖµ£®

½â´ð ½â£º£¨1£©Èçͼ1£¬
¢Ù×÷Ïß¶ÎABµÄÖеãO£¬
¢ÚÒÔµãOΪԲÐÄ£¬AB³¤Îª°ë¾¶»­Ô²£¬
¢ÛÔÚÔ²OÉÏȡһµãC£¨µãE¡¢F³ýÍ⣩£¬Á¬½ÓAC¡¢BC£®
¡à¡÷ABCÊÇËùÇó×÷µÄÈý½ÇÐΣ®

£¨2£©Èçͼ2£¬¡ÏC=90¡ã£¬AB=$\sqrt{7}$£¬BC=$\sqrt{3}$£¬
¡àAC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{£¨\sqrt{7}£©^{2}-£¨\sqrt{3}£©^{2}}$=2£¬
È¡ACµÄÖеãD£¬Á¬½ÓBD£¬
¡àCD=1£¬
ÔÚRt¡÷BCDÖУ¬
Óɹ´¹É¶¨ÀíµÃ£ºBD=$\sqrt{C{D}^{2}+B{C}^{2}}$=2£¬
¡àÖÐÏßBD=±ßAC£¬
¡à¡÷ABCÊÇ¡°ºÍгÈý½ÇÐΡ±£»

£¨3£©Ò×Öª£¬µãMÔÚABÉÏʱ£¬¡÷AMNÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬²»¿ÉÄÜÊÇ¡°ºÍгÈý½ÇÐΡ±£¬
µ±MÔÚBCÉÏʱ£¬Á¬½ÓAC½»MNÓÚµãE£¬
£¨¢ñ£©µ±µ×±ßMNµÄÖÐÏßAE=MNʱ£¬Èçͼ3£¬
ÓÉÌâÒâµÃ£ºAC=$\sqrt{2}$£¬MC=2-S£¬
¡ß¶¯µãM£¬N´ÓµãAͬʱ³ö·¢£¬ÒÔÏàͬËÙ¶ÈÔ˶¯£¬
¡àAB+BM=DN+AD£¬
¡àMC=CN£¬
¡à¡÷MCNÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àMN=$\sqrt{2}$MC=$\sqrt{2}$£¨2-s£©£¬CE=$\frac{1}{2}$MN=$\frac{\sqrt{2}}{2}$£¨2-S£©£¬
¡ßAE=MN£¬
¡à$\sqrt{2}-\frac{\sqrt{2}}{2}£¨2-s£©=\sqrt{2}£¨2-s£©$£¬S=$\frac{4}{3}$£»
£¨¢ò£©µ±ÑüAMÓëËüµÄÖÐÏßNGÏàµÈ£¬¼´AM=GN=ANʱ£¬
×÷NH¡ÍAMÓÚH£¬Èçͼ4£¬
¡ßNG=NA£¬NH¡ÍAM£¬
¡àGH=AH=$\frac{1}{2}$AG=$\frac{1}{4}$AM£¬
ÔÚRt¡÷NHAÖУ¬
NH=$\sqrt{A{N}^{2}-£¨\frac{1}{4}AM£©^{2}}$=$\sqrt{A{M}^{2}-£¨\frac{1}{4}AM£©^{2}}$=$\frac{\sqrt{15}}{4}AM$£¬
ÔÚRt¡÷NHMÖУ¬tan¡ÏHMN=$\frac{HN}{MH}$=$\frac{\frac{\sqrt{15}}{4}AM}{\frac{3}{4}AM}$=$\frac{\sqrt{15}}{3}$£»
ÔÚRt¡÷AMEÖУ¬tan¡ÏAME=$\frac{AE}{ME}$=$\frac{\sqrt{2}-\frac{\sqrt{2}}{2}£¨2-s£©}{\frac{\sqrt{2}}{2}£¨2-s£©}$=$\frac{s}{2-s}$£¬
Ôò $\frac{s}{2-s}=\frac{\sqrt{15}}{3}$£»
s=5-$\sqrt{15}$£¬
×ÛÉÏ£¬S=$\frac{4}{3}$»ò5-$\sqrt{15}$ʱ£®

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌâ¡¢Èý½ÇÐεÄÖÐÏߵ͍Òå¡¢Õý·½ÐεÄÐÔÖÊ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Èñ½ÇÈý½Çº¯Êý¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÀí½âÌâÒ⣬ѧ»áÓ÷½³ÌµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼´´ÐÂÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø