题目内容

8.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.
 甲乙 丙 
 每辆汽车能装的数量(吨) 4
 每吨水果可获利润(千元) 54
(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)
(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?

分析 (1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解答;
(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组$\left\{\begin{array}{l}{m+a+b=20}\\{4m+2a+3b=72}\end{array}\right.$,即可解答;
(3)设总利润为w千元,表示出w=10m+216.列出不等式组$\left\{\begin{array}{l}{m≥1}\\{m-12≥1}\\{32-2m≥1}\end{array}\right.$,确定m的取值范围13≤m≤15.5,结合一次函数的性质,即可解答.

解答 解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:
$\left\{\begin{array}{l}{x+y=8}\\{2x+3y=22}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$.
答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.
(2)设装运乙、丙水果的车分别为a辆,b辆,得:
$\left\{\begin{array}{l}{m+a+b=20}\\{4m+2a+3b=72}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=m-12}\\{b=32-2m}\end{array}\right.$.
答:装运乙种水果的汽车是(m-12)辆,丙种水果的汽车是(32-2m)辆.
(3)设总利润为w千元,
w=5×4m+7×2(m-12)+4×3(32-2m)=10m+216.
∵$\left\{\begin{array}{l}{m≥1}\\{m-12≥1}\\{32-2m≥1}\end{array}\right.$,
∴13≤m≤15.5,
∵m为正整数,
∴m=13,14,15,
在w=10m+216中,w随x的增大而增大,
∴当m=15时,W最大=366(千元),
答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.

点评 此题主要考查了一次函数的应用,解决本题的关键是运用函数性质求最值需确定自变量的取值范围.

练习册系列答案
相关题目
19.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?
问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.
探究一:
如图①,当n=5时,可将正方形分割为五个1×5的矩形.
如图②,当n=6时,可将正方形分割为六个2×3的矩形.
如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形
如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形
如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形

探究二:
当n=10,11,12,13,14时,分别将正方形按下列方式分割:

所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n-5 )×( n-5 )的正方形和两个5×(n-5)的矩形.显然,5×5的正方形和5×(n-5)的矩形均可分割为1×5的矩形,而(n-5)×(n-5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
探究三:
当n=15,16,17,18,19时,分别将正方形按下列方式分割:

请按照上面的方法,分别画出边长为18,19的正方形分割示意图.
所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n-10 )×(n-10)的正方形和两个10×(n-10)的矩形.显然,10×10的正方形和10×(n-10)的矩形均可分割为1x5的矩形,而(n-10)×(n-10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.
问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.
实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)
3.我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.
问题思考:
(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹,并简要说明理由;
(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;

问题拓展:
(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;
(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网