题目内容

4.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则$\frac{AM}{CN}$的值是$\frac{1}{3}$.

分析 在Rt△ECN中,利用勾股定理与折叠性质,求出CN的长度;过点M作MG⊥CD于点C,证明△MNG≌△DEC,得到GN=CE,从而求出DG,即AM的长度,于是得到结论.

解答 解:设CN=xcm,则DN=(8-x)cm.
由折叠可知,EN=DN=(8-x)cm.
在Rt△ECN中,CE=4cm,CN=xcm,EN=(8-x)cm,
由勾股定理得:EN2=CN2+CE2,即(8-x)2=x2+42
解得:x=3,
∴CN=3cm;
如图,过点M作MG⊥CD于点G,则由题意可知AM=DG,MG=BC=CD.
连接DE,交MG于点I.
由折叠可知,DE⊥MN,∴∠NMG+MIE=90°,
∵∠DIG+∠EDC=90°,∠MIE=∠DIG(对顶角相等),
∴∠NMG=∠EDC.
在△MNG与△DEC中,$\left\{\begin{array}{l}{∠NMG=∠EDC}\\{MG=CD}\\{∠MGN=∠DCE=90°}\end{array}\right.$,
∴△MNG≌△DEC(ASA).
∴GN=CE=4cm,
∴DG=CD-CN-GN=8-3-4=1cm.
∴AM=DG=1cm.
∴$\frac{AM}{CN}$的值是$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.

点评 考查了翻折问题,翻折问题关键是找准对应重合的量,哪些边、角是相等的.本题中DN=EN是解题关键,再利用勾股定理、全等三角形的知识就迎刃而解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网