题目内容
12.已知直线y=kx+b与直线$y=\frac{1}{2}x-3$平行且过点(-2,4),问:点P(4,7)是否在直线y=kx+b上?分析 据两直线平行,k的值相等,再把点(-2,4)代入,即可求得直线的表达式,然后把P(4,7)代入直线的表达式即可得到结论.
解答 解:∵直线y=kx+b与直线$y=\frac{1}{2}x-3$平行,
∴设直线解析式为y=$\frac{1}{2}$x+b,
把点(-2,4),代入y=$\frac{1}{2}$x+b,得b=5,
∴该直线的表达式为y=$\frac{1}{2}$x+5,
当x=4时,y=$\frac{1}{2}$x+5=7,
∴点P(4,7)在直线y=kx+b上.
点评 本题考查了用待定系数法求一次函数的解析式,掌握两直线平行,k的值相等是解题的关键.
练习册系列答案
相关题目