题目内容

1.如图①,在?ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止.设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为(  )
A.11B.14C.8+$\frac{3}{2}\sqrt{3}$D.8+3$\sqrt{3}$

分析 作CM⊥AB于M,根据三角形面积公式可得当点P在D上运动时,△PAB的面积不变,再联系函数图象可得BC=4cm,则AB=3cm,然后根据三角函数求出CM,三角形面积公式求出AB,即可得出结果.

解答 解:作CM⊥AB于M如图所示:
当点P在CD上运动时,△PAB的面积不变,
由图②得:BC=4cm,
∵∠ABC=120°,
∴∠CBM=60°,
∴CM=BC•sin60°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∵△ABC的面积=$\frac{1}{2}$AB•CM=$\frac{1}{2}$AB×2$\sqrt{3}$=6$\sqrt{3}$,
∴AB=6cm,
∴OH=4+6+4=14,
∴点H的横坐标为14.
故选:B.

点评 本题考查了平行四边形的性质、动点问题的函数图象.解决本题的关键是利用函数图象和三角形面积确定AB的长.

练习册系列答案
相关题目
13.设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2-2x-3,当x=4时,f(4)=42-2×4-3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2-2x-3的图象如图1所示.
观察可知:f(-2)>0,f(1)<0,则f(-2).f(1)<0.所以函数f(x)=x2-2x-3在-2≤x≤1范围内有零点.由于f(-1)=0,所以,-1是f(x)=x2-2x-3的零点,-1也是方程x2-2x-3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)•f(b)<0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是1.
(2)已知函数y2=f(x)=-$\sqrt{3}{x^2}-2\sqrt{3}(a-1)x-\sqrt{3}({a^2}-2a)$的零点为x1,x2,且x1<1<x2
①求零点为x1,x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1,x2,点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网