题目内容
5.(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是(1,-2);
(2)求出线段AC旋转过程中所扫过的面积(结果保留π).
分析 (1)利用旋转的性质得出)△A1B1C1与△ABC的关系,进而得出答案;
(2)利用扇形面积求法得出答案.
解答
解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,
B1的坐标是:(1,-2),
故答案为:C,90,(1,-2);
(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.
∵AC=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
∴面积为:$\frac{90°×π×(\sqrt{5})^{2}}{360°}$=$\frac{5π}{4}$,
即线段AC旋转过程中所扫过的面积为$\frac{5π}{4}$.
点评 此题主要考查了扇形面积求法以及旋转变换,正确得出旋转角是解题关键.
练习册系列答案
相关题目
16.
某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).
| 组号 | 分组 | 频数 |
| 一 | 6≤m<7 | 2 |
| 二 | 7≤m<8 | 7 |
| 三 | 8≤m<9 | a |
| 四 | 9≤m≤10 | 2 |
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).
3.若$\sqrt{{a}^{2}}$=($\sqrt{a}$)2,则a的取值范围是( )
| A. | a>0 | B. | a≥0 | C. | a=0 | D. | a<0 |