题目内容

14.如图,在?ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.
(1)若∠F=20°,求∠A的度数;
(2)若AB=5,BC=8,CE⊥AD,求?ABCD的面积.

分析 (1)由平行四边形的性质和已知条件得出∠AEB=∠CBF,∠ABE=∠F=20°,证出∠AEB=∠ABE=20°,由三角形内角和定理求出结果即可;
(2)求出DE,由勾股定理求出CE,即可得出结果.

解答 解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=8,CD=AB=5,AB∥CD,
∴∠AEB=∠CBF,∠ABE=∠F=20°,
∵∠ABC的平分线交AD于点E,
∴∠ABE=∠CBF,
∴∠AEB=∠ABE=20°,
∴AE=AB,∠A=(180°-20°-20°)÷2=140°;
(2)∵AE=AB=5,AD=BC=8,CD=AB=5,
∴DE=AD-AE=3,
∵CE⊥AD,
∴CE=$\sqrt{C{D}^{2}-D{E}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴?ABCD的面积=AD•CE=8×4=32.

点评 本题主要考查了平行四边形的性质,等腰三角形的判定、勾股定理;熟练掌握平行四边形的性质,证出∠AEB=∠ABE是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网