题目内容
13.①计算:($\sqrt{2}$+1)($\sqrt{2}$-1)=1;
($\sqrt{2}$+$\sqrt{3}$)($\sqrt{3}$-$\sqrt{2}$)=1;
②化简:
$\frac{1}{\sqrt{3}+2}$=2-$\sqrt{3}$.
③计算:
$\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+…+\frac{1}{\sqrt{2011}+\sqrt{2012}}$.
分析 ①根据平方差公式求出即可;
②先找出分母有理化因式,再分子和分母都乘以有理化因式即可;
③先分母有理化,再合并即可.
解答 解:①($\sqrt{2}$+1)($\sqrt{2}$-1)=($\sqrt{2}$)2-12=1,
($\sqrt{2}$+$\sqrt{3}$)($\sqrt{3}$-$\sqrt{2}$)=($\sqrt{3}$)2-($\sqrt{2}$)2=1.
故答案为:1,1;
②$\frac{1}{\sqrt{3}+2}$=$\frac{1×(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}$=2-$\sqrt{3}$.
故答案为:2-$\sqrt{3}$;
③原式=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$+$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$+…+$\frac{1×(\sqrt{2012}-\sqrt{2011})}{(\sqrt{2012}+\sqrt{2011})(\sqrt{2012}-\sqrt{2011})}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+…+$\sqrt{2012}$-$\sqrt{2011}$
=$\sqrt{2012}$-1.
点评 本题考查了二次根式的混合运算,平方差公式,分母有理化的应用,能找出分母的有理化因式是解此题的关键.
练习册系列答案
相关题目
5.
如图,在△ABC中,AC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,EC=2cm,则BE的长为( )
| A. | 4cm | B. | 5cm | C. | 6cm | D. | 8cm |