题目内容
2.下列各式中正确的是( )| A. | $\sqrt{25}$=±5 | B. | $\sqrt{-16}$=4 | C. | $\sqrt{2\frac{1}{4}}$=$\frac{3}{4}$ | D. | $\sqrt{9}$=3 |
分析 依据算术平方根的定义求解即可.
解答 解:A、$\sqrt{25}$=5,故A错误;
B、$\sqrt{-16}$无意义,故B错误;
C、$\sqrt{2\frac{1}{4}}$=$\sqrt{\frac{9}{4}}$=$\frac{3}{2}$,故C错误;
D、$\sqrt{9}$=3,故D正确.
故选:D.
点评 本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.
练习册系列答案
相关题目
12.数学问题:在1~51这51个自然数中,每次取两个不同的数,使得所取的两个数之和大于51,有多少中不同取法?
数学模型:为找到解决上面问题的方法,先建立简单的数学模型进行研究:
(1)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种不同取法?
解决问题过程如下:
第1行有1种取法(1,5)
第2行有2种取法(2,4),(2,5)
第3行有3种取法(3,3),(3,4),(3,5)
第4行有4种取法(4,2),(4,3),(4,4),(4,5)
第5行有5种取法(5,1),(5,2),(5,3),(5,4),(5,5)
共有1+2+3+4+5种取法,因为每次取两个不同的数,所以在这些取法中不包括(3,3),(4,4),(5,5),要从总数中减去这3中取法,并且(4,2)与(2,4),(4,3)与(3,4),(5,1)与(1,5),(5,2)与(2,5),…(5,4)与(4,5)是同一种取法,因此共有$\frac{1+2+3+4+5-\frac{5+1}{2}}{2}$=6种不同的取法.
(2)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
解决问题过程如下:
第1行有1种取法(1,6)
第2行有2种取法(2,5),(2,6)
第3行有3种取法(3,4),(3,5),(3,6)
第4行有4种取法(4,3),(4,4),(4,5),(4,6)
第5行有5种取法(5,2),(5,3),(5,4),(5,5),(5,6)
第6行有6种取法(6,1),(6,2),(6,3),6,4),(6,5),(6,6)
共有1+2+3+4+5+6种取法,因为每次取两个不同的数,所以在这些取法中不包括(4,4),(5,5),(6,6),要从总数中减去这3中取法,并且(4,3)与(3,4),(5,2)与(2,5),(5,3)与(3,5),(5,4)与(4,5),(6,1)与(1,6),(6,2)与(2,6)…(6,5)与(5,6)是同一种取法,因此共有$\frac{1+2+3+4+5+6-\frac{6}{2}}{2}$=9种不同的取法.
归纳探究:
仿照上述研究问题的思路和解决过程,回答下列提出的问题:
(1)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,共有12种不同取法.(只填结果)
(2)在1~8这8个自然数中,每次取两个不同的数,使得所取的两个数之和大于8,共有16种不同取法.(只填结果)
(3)在1~n(n为奇数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}-1}{4}$种不同取法.(只填最简算式)
(4)在1~n(n为偶数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}}{4}$种不同取法.(只填最简算式)
类比应用:类比上述研究方法或应用其结论,解决下列提出的问题:
(5)各边长都是整数,最大边长为51的三角形有多少个?(直接列出算术,并计算结果)
数学模型:为找到解决上面问题的方法,先建立简单的数学模型进行研究:
(1)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种不同取法?
解决问题过程如下:
| 1 | 2 | 3 | 4 | 5 | |
| 1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) |
| 2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) |
| 3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) |
| 4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) |
| 5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) |
第2行有2种取法(2,4),(2,5)
第3行有3种取法(3,3),(3,4),(3,5)
第4行有4种取法(4,2),(4,3),(4,4),(4,5)
第5行有5种取法(5,1),(5,2),(5,3),(5,4),(5,5)
共有1+2+3+4+5种取法,因为每次取两个不同的数,所以在这些取法中不包括(3,3),(4,4),(5,5),要从总数中减去这3中取法,并且(4,2)与(2,4),(4,3)与(3,4),(5,1)与(1,5),(5,2)与(2,5),…(5,4)与(4,5)是同一种取法,因此共有$\frac{1+2+3+4+5-\frac{5+1}{2}}{2}$=6种不同的取法.
(2)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
解决问题过程如下:
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
| 2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
| 3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
| 4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
| 5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
| 6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
第2行有2种取法(2,5),(2,6)
第3行有3种取法(3,4),(3,5),(3,6)
第4行有4种取法(4,3),(4,4),(4,5),(4,6)
第5行有5种取法(5,2),(5,3),(5,4),(5,5),(5,6)
第6行有6种取法(6,1),(6,2),(6,3),6,4),(6,5),(6,6)
共有1+2+3+4+5+6种取法,因为每次取两个不同的数,所以在这些取法中不包括(4,4),(5,5),(6,6),要从总数中减去这3中取法,并且(4,3)与(3,4),(5,2)与(2,5),(5,3)与(3,5),(5,4)与(4,5),(6,1)与(1,6),(6,2)与(2,6)…(6,5)与(5,6)是同一种取法,因此共有$\frac{1+2+3+4+5+6-\frac{6}{2}}{2}$=9种不同的取法.
归纳探究:
仿照上述研究问题的思路和解决过程,回答下列提出的问题:
(1)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,共有12种不同取法.(只填结果)
(2)在1~8这8个自然数中,每次取两个不同的数,使得所取的两个数之和大于8,共有16种不同取法.(只填结果)
(3)在1~n(n为奇数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}-1}{4}$种不同取法.(只填最简算式)
(4)在1~n(n为偶数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}}{4}$种不同取法.(只填最简算式)
类比应用:类比上述研究方法或应用其结论,解决下列提出的问题:
(5)各边长都是整数,最大边长为51的三角形有多少个?(直接列出算术,并计算结果)
13.下列说法正确的是( )
| A. | 一个有理数的平方根有两个,它们互为相反数 | |
| B. | 一个有理数的立方根,不是正数就是负数 | |
| C. | 负数没有立方根 | |
| D. | 如果一个数的立方根等于这个数的算术平方根,则这个数一定是0或1 |
17.方程2x2-5x+3=0的根的情况是( )
| A. | 有一个实数根 | B. | 没有实数根 | ||
| C. | 有两个相等的实数根 | D. | 有两个不相等的实数根 |
11.下面计算正确的是( )
| A. | 3a-2a=1 | B. | a6÷a2=a3 | C. | (2ab)3=6a3b3 | D. | -a4÷a4=-a8 |
12.一元二次方程x2=2x的解是( )
| A. | x=0 | B. | x=2 | C. | x1=0,x2=2 | D. | 无实数解 |