题目内容

将一个正方形按下列要求割成4块:

(1)分割后的整个图形必须是轴对称图形;

(2)所分得的4块图形是全等图形.

请你按照上述两个要求,分别在图①,②,③中的正方形中画出3种不同的分割方法.(不写画法)

答案不唯一, 【解析】分割后的整个图形必须是轴对称图形,作两边的中垂线;四块图形的完全相同,作法较多,符合要求即可. 【解析】 如图所示.
练习册系列答案
相关题目

五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.

3 【解析】试题解析:由三角形的两边之和大于第三边,两边之差小于第三边可知 在所给数组中能组成三角形的是2、3、4;2、4、5和3、4、5三组. 故答案为:3.

(1)请指出小明的作业(如图)从哪一步开始出现错误,更正过来,并计算出正确结果;

(2)若a,b是不等式组的整数解(a<b),求(1)中分式的值.

(1)小明第一步中括号内计算错了,a+b;(2)3 【解析】试题分析:(1)根据题意,先算括号里面的(通分后进行相减),且把除法转化为乘法,然后约分即可判断错误点,并改错; (2)通过解不等式组,求出x的取值范围,然后取分母不为0的之代入可求值. 试题解析:(1)小明第一步中括号内计算错了; 原式=×= ×=a+b. (2)∵解不等式2x>0得x>0,解不等式x-3<...

如图,已知△ABC和△BDE均为等边三角形.试说明:BD+CD=AD.

见解析 【解析】首先证明△ABE≌△CBD,进而得到DC=AE,再由AD=AE+ED利用等量代换即可证出AD=BD+CD. 证明:因为△ABC,△BDE均为等边三角形, 所以BE=BD=DE,AB=BC,∠ABC=∠EBD=60°. 所以∠ABE+∠EBC=∠DBC+∠EBC. 所以∠ABE=∠DBC. 在△ABE和△CBD中, 所以△ABE≌△CBD(S...

剪纸是中国的民间艺术,剪纸的方法有很多,下面是一种剪纸的方法.如图,先将纸折叠,然后剪出图形,再展开,即可得到图案.

下面四个图案中,不能用上述方法剪出的是(  )

A.

B.

C.

D.

C 【解析】将纸对折再对折将会出现两条互相垂直的折痕,剪出的图形是以这两条折痕为对称轴的轴对称图形,图A、图B、图D均能用上述方法剪出.图C是轴对称图形,但只有一条对称轴,所以将纸折叠不会剪出此图形. 故选:C.

如图,已知tan O=,点P在边OA上,OP=5,点M,N在边OB上,PM=PN,如果MN=2,那么PM=________.

【解析】试题解析:过P作PD⊥OB,交OB于点D, ∴设PD=4x,则OD=3x, ∵OP=5,由勾股定理得: ∴x=1, ∴PD=4, ∵PM=PN,PD⊥OB,MN=2 在Rt△PMD中,由勾股定理得: 故答案为:

在Rt△ABC中,∠C=90°,CD是斜边AB上的高,如果CD=3,BD=2.求cos∠A的值.

【解析】分析:根据题意画出图形,进而利用锐角三角函数关系得出cosA=cos∠BCD进而求出即可. 本题解析: 如图所示: ∵∠ACB=90°,∴∠B+∠A=90°, ∵CD⊥AB,∴∠CDA=90°,∴∠B+∠BCD=90°,∴∠BCD=∠A, ∵CD=3,BD=2,∴BC= ∴cosA=cos∠BCD= 故答案为:

如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )

A. PC=PD B. ∠CPD=∠DOP C. ∠CPO=∠DPO D. OC=OD

B 【解析】试题分析:已知OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,根据角平分线的性质可得PC=PD,A正确;在Rt△OCP与Rt△ODP中,OP=OP,PC=PD,由HL可判定△OCP≌△ODP,根据全等三角形的性质可得∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故答案选B.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网