题目内容

五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.

3 【解析】试题解析:由三角形的两边之和大于第三边,两边之差小于第三边可知 在所给数组中能组成三角形的是2、3、4;2、4、5和3、4、5三组. 故答案为:3.
练习册系列答案
相关题目

如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.

(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?

(2)汽车在那些时间段保持匀速行驶?时速分别是多少?

(3)出发后8分到10分之间可能发生了什么情况?

(4)用自己的语言大致描述这辆汽车的行驶情况.

(1)见解析;(2)见解析;(3)见解析;(4)见解析; 【解析】(1)汽车从出发到最后停止共经过了24min,它的最高时速是90km/h (2)汽车大约在2分到6分,18分到22分之间保持匀速行驶,时速分别是30km/h 和90km/h (3)出发后8分到10分速度为0,所以汽车是处于静止的。可能遇到了红灯或者障碍(或者遇到了朋友或者休息)。(答案不唯一,只要所说的情况合理即可...

点M(2,-3)与点N(2,3)关于______对称;点A(-2,-4)与点B(2,4)关于______对称;点G(4,0)与点H(-4,0)关于____________对称.

x轴 原点 y轴 【解析】根据关于x轴对称的点的坐标规律:横坐标相同,纵坐标互为相反数,关于原点的对称点,横纵坐标都变成相反数,关于y轴对称的点的坐标规律:横坐标互为相反数,纵坐标相同, 所以点M与点N关于x轴对称,点A与点B关于原点对称,点G与点H关于y轴对称,故答案为: x轴, 原点, y轴.

如图,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.

6个. 【解析】试题分析:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,因而三角形的个数就是B、C、D、E四点中,两个分成一组,点的组数. 试题解析:可以确定6个三角形. 理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形, 所以图中可以确定6个三角形.

直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________.

65°和25° 【解析】试题解析:设这两个锐角的度数分别为x,y, 根据题意得, 解得 故答案为:

如图,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 (  )

A. ∠1 B. ∠2 C. ∠B D. ∠1、∠2和∠B

B 【解析】试题解析: ∵∠ACB=即∠1+∠2= 又∵中,∠A+∠1= ∴∠A=∠2. 故选B.

已知a=b+2 018,求代数式的值.

4036 【解析】试题分析:根据分式的乘除法,先对分子分母分解因式,然后把除法化为乘法,再约分,然后代入求值. 试题解析:原式=××(a-b)(a+b)=2(a-b). ∵a=b+2 018,∴原式=2×2 018=4 036.

将一个正方形按下列要求割成4块:

(1)分割后的整个图形必须是轴对称图形;

(2)所分得的4块图形是全等图形.

请你按照上述两个要求,分别在图①,②,③中的正方形中画出3种不同的分割方法.(不写画法)

答案不唯一, 【解析】分割后的整个图形必须是轴对称图形,作两边的中垂线;四块图形的完全相同,作法较多,符合要求即可. 【解析】 如图所示.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网