题目内容

如图 1,将一张矩形纸片 ABCD 沿着对角线 BD 向上折叠,顶点 C 落到点 E 处,BE 交 AD 于点 F.

(1)求证:△BDF 是等腰三角形;

(2)如图 2,过点 D 作 DG∥BE,交 BC 于点 G,连接 FG 交 BD 于点 O.

①判断四边形 BFDG 的形状,并说明理由;

②若 AB=6,AD=8,则 FG 的长为_____.

【解析】试题分析:(1)证明△BDF是等腰三角形,可证明BF=DF,可通过证明∠EBD=∠FDB实现,利用折叠的性质和平行线的性质解决. (2)①先判断四边形BFDG是平行四边形,再由(1)BF=FD得到结论; ②要求FG的长,可先求出OF的长,在Rt△BFO中,BO可由AB、AD的长及菱形的性质求得,解决问题的关键是求出BF的长.在Rt△BFA中,知AB=6、AF+BF=AD=8,可...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网