题目内容

1.如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在梯形内画出一个最大的扇形,则阴影部分的面积为10$\sqrt{3}$-4π.

分析 设扇形与BC相切于点E,连接AE,首先证明四边形CDAE是矩形,在RT△AEB中求出AE以及∠EAB,求出圆心角∠DAB,根据S=S梯形ABCD-${S}_{扇形}\\;\$即可解决问题.

解答 解:如图设扇形与BC相切于点E,连接AE,则AE⊥BC.

∵AD∥BC,∠C=90°,
∴∠D=∠C=∠AEC=90°,
∴四边形ADCE是矩形,
∴AD=CE=4,
∵BC=6,
∴BE=2,
在RT△AEB中,∵∠AEB=90°,AB=4,EB=2,
∴AE=$\sqrt{A{B}^{2}-E{B}^{2}}$=2$\sqrt{3}$,AB=2EB,
∴∠EAB=30°,
∵∠DAE=90°,
∴∠DAB=120°,
∴S=S梯形ABCD-${S}_{扇形}\\;\$=$\frac{1}{2}$(4+6)$•2\sqrt{3}$-$\frac{120π•(2\sqrt{3})^{2}}{360}$=10$\sqrt{3}$-4π.
故答案为10$\sqrt{3}$-4π

点评 本题考查扇形的面积的计算、梯形面积的计算等知识,解题的关键是添加辅助线,构造特殊四边形以及直角三角形,记住扇形面积公式S扇形=$\frac{nπ{R}^{2}}{360}$=$\frac{1}{2}$LR(n是圆心角,R是半径,L是弧长),属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网