题目内容
18.解方程组:(1)$\left\{\begin{array}{l}x-1=y+5\\ x+5=5({y-1})\end{array}\right.$
(2)$\left\{\begin{array}{l}\frac{x+1}{5}-\frac{y-1}{2}=-1\\ x+y=2\end{array}\right.$.
分析 (1)方程组整理后,利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)方程组整理得:$\left\{\begin{array}{l}{x-y=6①}\\{x-5y=-10②}\end{array}\right.$,
①-②得:4y=16,即y=4,
把y=4代入①得:x=10,
则方程组的解为$\left\{\begin{array}{l}{x=10}\\{y=4}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{2x-5y=-17①}\\{x+y=2②}\end{array}\right.$,
①+②×5得:7x=-7,即x=-1,
把x=-1代入②得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
13.某班级学生春游时准备分组自由活动,若每组5人,则余2人;若每组6人,又缺少5人.设这个班级的学生数为x,分成组数为y,则可得的方程组是( )
| A. | $\left\{\begin{array}{l}5y=x+2\\ 6y+5=x\end{array}\right.$ | B. | $\left\{\begin{array}{l}5x+2=y\\ 6x-5=y\end{array}\right.$ | C. | $\left\{\begin{array}{l}5y=x+2\\ 6y=x+5\end{array}\right.$ | D. | $\left\{\begin{array}{l}5y=x-2\\ 6y=x+5\end{array}\right.$ |