题目内容

15.探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角△ABD和等腰直角△ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由.
应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

分析 根据全等三角形的判定方法得出△CAD≌△EAB(SAS),进而利用全等三角形的性质结合勾股定理得出DC的长,进而得出答案.

解答 解:探索:BE=CD,
理由:∵∠BAD=∠CAE=90°,
∴∠CAD=∠EAB,
在△CAD和△EAB中
∵$\left\{\begin{array}{l}{DA=AB}\\{∠CAD=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△CAD≌△EAB(SAS),
∴BE=CD;

应用:如图②,过点A作AD⊥AB,且AD=AB,连接BD,
由探索,得△CAD≌△EAB,
∴BE=DC,
∵BC=AB=100m,
∴AB=AD=100m,
∵∠DAB=90°,
∴∠ABD=45°,BD=100$\sqrt{2}$m,
∵∠ABC=45°,
∴∠DBC=90°,
在Rt△DBC中,BC=100m,BD=100$\sqrt{2}$m,
∴CD=$\sqrt{10{0}^{2}+(100\sqrt{2})^{2}}$=100$\sqrt{3}$(m),
则BE=100$\sqrt{3}$m,
答:BE的长为100$\sqrt{3}$m.

点评 此题主要考查了全等三角形的判定与性质以及勾股定理应用,正确得出△CAD≌△EAB(SAS)是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网