题目内容

7.解方程组:
(1)$\left\{\begin{array}{l}{3x=2y}\\{x-2y=-4}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+y+z=6}\\{3x-y=3}\\{2x+3y-z=12}\end{array}\right.$.

分析 (1)方程利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{3x=2y①}\\{x-2y=-4②}\end{array}\right.$,
把①代入②得:x-3x=-4,
解得:x=2,
把x=2代入①得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+y+z=6①}\\{3x-y=3②}\\{2x+3y-z=12③}\end{array}\right.$,
①+③得:3x+4y=18④,
②×4+④得:15x=30,即x=2,
把x=2代入②得:y=3,
把x=2,y=3代入①得:z=1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\\{z=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,以及解三元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网