ÌâÄ¿ÄÚÈÝ
15£®¹Û²ìÏÂÁе¥Ïîʽ£º-x£¬2x2£¬-3x3£¬¡£¬-9x9£¬10x10£¬¡ÄãÄÜд³öµÚn¸öµ¥ÏîʽÂð£¿Çëд³öµÚ2015¸öµ¥Ïîʽ£®ÎªÁ˽â¾öÕâ¸öÎÊÌ⣬ÎÒÃDz»·Á´ÓϵÊýºÍ´ÎÊýÁ½¸ö·½ÃæÈëÊÖ½øÐÐ̽Ë÷£¬´ÓÖÐÎÒÃÇ¿ÉÒÔ·¢ÏÖ£¬¹éÄɲ¢²ÂÏë½áÂÛ£®£¨1£©ÏµÊýµÄ¹æÂÉÓÐÁ½Ìõ£º
¢ÙϵÊýµÄ·ûºÅ¹æÂÉÊÇ£¨-1£©n£¨ÓôøÓÐnµÄ´úÊýʽ±íʾ£¬nΪÕýÕûÊý£¬ÏÂͬ£©£»
¢ÚϵÊýµÄ¾ø¶ÔÖµ¹æÂÉÊÇ2n£»
£¨2£©´ÎÊýµÄ¹æÂÉÊǵÚn¸öµ¥ÏîʽµÄ´ÎÊýΪn£»
£¨3£©¸ù¾ÝÉÏÃæµÄ¹éÄÉ£¬¿ÉÒÔ²ÂÏë³öµÚn¸öµ¥ÏîʽÊÇ£¨-1£©n¡Á2nxn£®
£¨4£©¸ù¾Ý²ÂÏëµÄ½áÂÛ£¬¿ÉÖªµÚ2015¸öµ¥ÏîʽÊÇ-22015x2015£®
·ÖÎö £¨1£©¸ù¾ÝÌâÖиöËù¸ø³öµÄµ¥ÏîʽÕÒ³öÆäϵÊý¼°´ÎÊýµÄ¹æÂɼ´¿É£»
£¨2£©£¨3£©£¨4£©¸ù¾Ý£¨1£©ÖеĹæÂɼ´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßµÚÒ»¸öµ¥ÏîʽÊÇ-2x=£¨-1£©1¡Á21x1£»
µÚ¶þ¸öµ¥ÏîʽÊÇ22x2=£¨-1£©2¡Á22x2£»
µÚÈý¸öµ¥ÏîʽÊÇ-23x3=£¨-1£©3¡Á23x3£»
¡£»
¡àµÚn¸öµ¥ÏîʽÊÇ£¨-1£©n¡Á2nxn£®
¡à¢ÙϵÊý·ûºÅµÄ¹æÂÉÊÇ£¨-1£©n£»
¢Ú´ÎÊýµÄ¹æÂÉÊÇ2n£®
¹Ê´ð°¸Îª£º£¨-1£©n£»2n£®
£¨2£©¡ßÓÉ£¨1£©ÖªµÚn¸öµ¥ÏîʽÊÇ=£¨-1£©n¡Á2nxn£¬
¡à´ÎÊýµÄ¹æÂÉÊÇ£ºµÚn¸öµ¥ÏîʽµÄ´ÎÊýΪn£»
¹Ê´ð°¸Îª£ºµÚn¸öµ¥ÏîʽµÄ´ÎÊýΪn£»
£¨3£©ÓÉ£¨1£©ÖªµÚn¸öµ¥ÏîʽÊÇ=£¨-1£©n¡Á2nxn£»
¹Ê´ð°¸ÊÇ£º£¨-1£©n¡Á2nxn£»
£¨4£©¡ßÓÉ£¨3£©ÖªµÚn¸öµ¥ÏîʽÊÇ=£¨-1£©n¡Á2nxn£¬
¡àµÚ2015¸öµ¥ÏîʽΪ=£¨-1£©2015¡Á22015x2015=-22015x2015£®
¹Ê´ð°¸Îª£º-22015x2015£®
µãÆÀ ±¾Ì⿼²éµÄÊǵ¥Ïîʽ£¬¸ù¾ÝÌâÒâÕÒ³ö¹æÂÉÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®½«·Öʽ$\frac{\frac{1}{2}a-\frac{1}{3}b}{\frac{1}{4}a+\frac{1}{3}b}$ÖзÖ×ÓÓë·ÖĸµÄ¸÷ÏîϵÊý»¯ÎªÕûÊý£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | $\frac{3a-2b}{3a+4b}$ | B£® | $\frac{4a-3b}{2a+4b}$ | C£® | $\frac{6a+3b}{3a+4b}$ | D£® | $\frac{6a-4b}{3a+4b}$ |