题目内容
| A、a>0 |
| B、关于x的一元二次方程ax2+bx+c=3有两个相等的实数根 |
| C、c<0 |
| D、当x≥0时,y随x的增大而减小 |
考点:二次函数的性质
专题:数形结合
分析:根据抛物线开口方向对A进行判断;根据抛物线顶点坐标对B进行判断;根据抛物线与y轴的交点位置对C进行判断;根据二次函数的性质对D进行判断.
解答:解:A、抛物线开口向下,则a<0,所以A选项错误;
B、因为抛物线当x=1时,二次函数有最大值3,则关于x的一元二次方程ax2+bx+c=3有两个相等的实数根为x1=x2=1,所以B选项正确;
C、抛物线与x轴的交点在x轴上方,则c>0,所以C选项错误;
D、当x>1时,y随x的增大而减小,所以D选项错误.
故选B.
B、因为抛物线当x=1时,二次函数有最大值3,则关于x的一元二次方程ax2+bx+c=3有两个相等的实数根为x1=x2=1,所以B选项正确;
C、抛物线与x轴的交点在x轴上方,则c>0,所以C选项错误;
D、当x>1时,y随x的增大而减小,所以D选项错误.
故选B.
点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-
,
),对称轴直线x=-
,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-
时,y随x的增大而减小;x>-
时,y随x的增大而增大;x=-
时,y取得最小值
,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-
时,y随x的增大而增大;x>-
时,y随x的增大而减小;x=-
时,y取得最大值
,即顶点是抛物线的最高点.
| b |
| 2a |
| 4ac-b2 |
| 4a |
| b |
| 2a |
| b |
| 2a |
| b |
| 2a |
| b |
| 2a |
| 4ac-b2 |
| 4a |
| b |
| 2a |
| b |
| 2a |
| b |
| 2a |
| 4ac-b2 |
| 4a |
练习册系列答案
相关题目
2015的相反数是( )
A、-
| ||
| B、2015 | ||
C、
| ||
| D、-2015 |
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)
其中正确的有( )
| A、①②③ | B、②③④ |
| C、①③④ | D、①②③④ |
| A、1个 | B、2个 | C、3个 | D、4个 |
| A、80° | B、50° |
| C、40° | D、20° |