题目内容

2.方程组$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{3}y=1}\\{\sqrt{3}x+\sqrt{2}y=2}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2\sqrt{3}-\sqrt{2}}\\{y=\sqrt{3}-2\sqrt{2}}\end{array}\right.$.

分析 利用解方程组的方法与步骤求得方程组的解即可.

解答 解:$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{3}y=1①}\\{\sqrt{3}x+\sqrt{2}y=2②}\end{array}\right.$
①×$\sqrt{3}$-②×$\sqrt{2}$得,y=$\sqrt{3}$-2$\sqrt{2}$③,
把③代入①得,$\sqrt{2}$x+$\sqrt{3}$($\sqrt{3}$-2$\sqrt{2}$)=1,
解得x=2$\sqrt{3}$-$\sqrt{2}$,
所以原方程组的解为$\left\{\begin{array}{l}{x=2\sqrt{3}-\sqrt{2}}\\{y=\sqrt{3}-2\sqrt{2}}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{x=2\sqrt{3}-\sqrt{2}}\\{y=\sqrt{3}-2\sqrt{2}}\end{array}\right.$.

点评 此题考查二次根式的实际运用,掌握二元一次方程组的解法是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网