题目内容
等腰中, .两腰高线交于一点,则描述与的关系最准确的是( ).
A. B. C. 垂直 D. 垂直平分
下列四个数中,最大的一个数是( )
A.2 B. C.0 D.﹣2
二次函数图象的顶点坐标是__________.
解下列不等式,并把它的解在数轴上表示出来(数轴需用黑笔描画):
().
如图,在中,已知, , 是的中点,点、分别在、边上运动(点不与点、重合),且保持,连接、、.在此运动变化的过程中,有下列结论,其中正确的结论是( )
①四边形有可能成为正方形;②是等腰直角三角形;
③四边形的面积是定值;④点到线段的最大距离为.
A. ①④ B. ①②③ C. ①②④ D. ①②③④
阅读材料:如图1,若点P是⊙O外的一点,线段PO交⊙O于点A,则PA长是点P与⊙O上各点之间的最短距离.
证明:延长PO交⊙O于点B,显然PB>PA.
如图2,在⊙O上任取一点C(与点A,B不重合),连结PC,OC.
∵PO<PC+OC,
且PO=PA+OA,OA=OC,
∴PA<PC
∴PA 长是点P与⊙O上各点之间的最短距离.
由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.
(1)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是 上的一个动点,连接AP,则AP长的最小值是 .
(2)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,①求线段A’M的长度; ②求线段A′C长的最小值.
如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.
下列方程一定是一元二次方程的是( )
A. 3x2+﹣1=0 B. 5x2﹣6y﹣3=0 C. ax2﹣x+2=0 D. 3x2﹣2x﹣1=0
如图,⊙的直径, 是圆上任一点(、除外),的平分线交⊙于,弦过、的中点、,则的长是( )
A. B. C. D.