题目内容

如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上

(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;

(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

(1)见解析;(2)见解析. 【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO; (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论. 试题解析: 证明:(1)选取①②, ...
练习册系列答案
相关题目

是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.

k只能取3,4,5 【解析】【试题分析】解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k的范围,即可知道k的取值. 【试题解析】解方程组得 ∵x大于1,y不大于1从而得不等式组 解之得2<k≤5 又∵k为整数 ∴k只能取3,4,5 答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.

若a>b>0,则下列结论正确的是(  )

A. ﹣a>﹣b B. C. a3<0 D. a2>b2

D 【解析】A、不等式两边都乘﹣1,不等号的方向改变,错误; B、3>2>0,但<,错误; C、正数的奇次幂是正数,a3>0,错误; D、两个正数,较大的数的平方也大,正确; 故选D.

不等式﹣2x<4的解集是(  )

A. x>2 B. x<2 C. x<﹣2 D. x>﹣2

D 【解析】两边同时除以﹣2,得:x>﹣2. 故选D.

如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.

(1)若AB=DC,则四边形ABCD的面积S=__;

(2)若AB>DC,则此时四边形ABCD的面积S′__S(用“>”或“=”或“<”填空).

(1)15;(2)=. 【解析】试题分析:(1)∵AB=DC,AB∥DC, ∴四边形ABCD是平行四边形, ∴四边形ABCD的面积S=5×3=15, (2)如图,连接EC,延长CD、BE交于点P, ∵E是AD中点, ∴AE=DE, 又∵AB∥CD, ∴∠ABE=∠P,∠A=∠PDE, 在△ABE和△DPE中, ∵, ∴△ABE≌△D...

如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是(  )

A. EF=CF B. EF=DE C. CF<BD D. EF>DE

B 【解析】试题分析:∵DE是△ABC的中位线, ∴DE∥BC,DE=BC, ∵CF∥BD, ∴四边形BCFD是平行四边形, ∴DF=BC,CF=BD, ∴EF=DF-DE=BC-DE=BC=DE. 故选B.

如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.

(1)求证:△ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的长.

(1)证明过程见解析;(2)8. 【解析】试题分析:(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD, ...

如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为(  )

A. 150° B. 130° C. 120° D. 100°

C 【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网