ÌâÄ¿ÄÚÈÝ
2£®Ä³Ñо¿ÐÔѧϰС×éÔÚ̽¾¿¾ØÐεÄÕÛÖ½ÎÊÌâʱ£¬½«Ò»¿éÖ±½ÇÈý½Ç°åµÄÖ±½Ç¶¥µãÈÆ×žØÐÎABCD£¨AB£¼BC£©µÄ¶Ô½ÇÏß½»µãOÐýת£¨Èçͼ¢Ù¡ú¢Ú¡ú¢Û£©£¬Í¼ÖÐM¡¢N·Ö±ðΪֱ½ÇÈý½Ç°åµÄÖ±½Ç±ßÓë¾ØÐÎABCDµÄ±ßCD¡¢BCµÄ½»µã£®£¨1£©¸ÃѧϰС×éÖÐÒ»Ãû³ÉÔ±ÒâÍâµØ·¢ÏÖ£ºÔÚͼ¢Ù£¨Èý½Ç°åµÄÒ»Ö±½Ç±ßÓëODÖØºÏ£©ÖУ¬BN2=CD2+CN2£»ÔÚͼ¢Û£¨Èý½Ç°åµÄÒ»Ö±½Ç±ßÓëOCÖØºÏ£©ÖУ¬BN¡¢CN¡¢CDÖ®¼äµÄ¹ØÏµCN2=CD2+BN2£®
£¨2£©ÊÔ̽¾¿Í¼¢ÚÖÐBN¡¢CN¡¢CM¡¢DMÕâËÄÌõÏß¶ÎÖ®¼äµÄ¹ØÏµ£¬Ð´³öÄãµÄ½áÂÛ£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©ÈôAB=8£¬BC=10£¬ÊÇ·ñ´æÔÚijһÐýתλÖã¬Ê¹µÃCM+CNµÈÓÚ$\frac{44}{5}$£¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱDMµÄ³¤£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉËıßÐÎABCDÊǾØÐκÍÈý½Ç°åµÄÌØµã£¬µÃµ½OB=OD£¬¡ÏDON=90¡ãÀûÓù´¹É¶¨Àí£¬¼´¿É£»
£¨2£©ÓÉËıßÐÎABCDΪ¾ØÐκÍÈý½Ç°åµÄÌØµã£¬µÃ³ö½áÂÛ£¬Åжϳö¡÷BON¡Õ¡÷DOP£¬ÔÙÀûÓù´¹É¶¨Àí£¬¼´¿É£»
£¨3£©ÓɾØÐκÍÈý½Ç°åµÄÌØµãÒÔ¼°ÐýתµÄÐÔÖʵõ½£¬MP=MN£¬ÀûÓù´¹É¶¨Àí£¬È»ºóÓÃCM+CN=$\frac{44}{5}$£¬¼´¿É£®
½â´ð £¨1£©Ö¤Ã÷£ºÈçͼ¢Ù£¬Á¬½ÓDN£¬![]()
¡ßËıßÐÎABCDÊǾØÐΣ¬
¡àOB=OD£¬
¡ß¡ÏDON=90¡ã£¬
¡àBN=DN£¬
¡ß¡ÏBCD=90¡ã£¬
¡àDN2=CD2+CN2£¬
¡àBN2=CD2+CN2£»
Èçͼ¢Û£¬![]()
ÑÓ³¤NO½»ADÓÚP£¬
¡ßËıßÐÎABCDÊǾØÐΣ¬
¡àOD=OB£¬AD¡ÎBC£¬
¡à¡ÏDPO=¡ÏBNO£¬¡ÏPDO=¡ÏNBO£¬
ÔÚ¡÷BONºÍ¡÷DOPÖÐ
$\left\{\begin{array}{l}{¡ÏNBO=¡ÏPDO}\\{¡ÏBNO=¡ÏDPO}\\{OB=OD}\end{array}\right.$£¬
¡à¡÷BON¡Õ¡÷DOP£¬
¡àON=OP£¬BN=PD£¬
¡ßOC¡ÍDP£¬
¡àCN=CP£¬
¸ù¾Ý¹´¹É¶¨ÀíµÃ£¬CP2=DP2+CD2£¬
¡àCN2=BN2+CD2
¹Ê´ð°¸ÎªCN2=CD2+BN2£»
£¨2£©Ö¤Ã÷£ºÈçͼ¢Ú£¬ÑÓ³¤NO½»ADÓÚµãP£¬Á¬½ÓPM£¬MN£¬![]()
¡ßËıßÐÎABCDÊǾØÐΣ¬
¡àOD=OB£¬AD¡ÎBC£¬
¡à¡ÏDPO=¡ÏBNO£¬¡ÏPDO=¡ÏNBO£¬
ÔÚ¡÷BONºÍ¡÷DOPÖÐ
$\left\{\begin{array}{l}{¡ÏNBO=¡ÏPDO}\\{¡ÏBNO=¡ÏDPO}\\{OB=OD}\end{array}\right.$£¬
¡à¡÷BON¡Õ¡÷DOP£¬
¡àON=OP£¬BN=PD£¬
¡ß¡ÏMON=90¡ã£¬
¡àPM=MN£¬
¡ß¡ÏADC=¡ÏBCD=90¡ã£¬
¡àPM2=PD2+DM2£¬MN2=CM2+CN2£¬
¡àPD2+DM2=CM2+CN2£¬
¡àBN2+DM2=CM2+CN2£®
£¨3£©Èçͼ¢Û£¬![]()
ÑÓ³¤NO½»ADÓÚµãP£¬Á¬½ÓMN£¬MP£¬
¡ßOΪ¾ØÐÎABCDµÄ¶Ô½ÇÏߵĽ»µã£¬
¡àÓÉÐýת¿ÉµÃ£¬BN=DP£¬OP=ON£¬
¡àOM´¹Ö±Æ½·ÖPN£¬
¡àMP=MN£¬
ÔÚRt¡÷MDPÖУ¬MP2=DP2+DM2£¬
ÔÚRt¡÷MCNÖУ¬MM2=CN2+CM2£¬
¡ßMP=MN£¬BN=DP£¬
¡àBN2+DM2=CN2+CM2£¬
ÉèDM=x£¬CN=y£¬
¡àCM=8-x£¬BN=10-y£¬
¡à£¨10-y£©2+x2=y2+£¨8-x£©2£¬
¡ày=$\frac{4}{5}$x+$\frac{9}{5}$£¬
¡àCM+CN=8-x+y=8-x+$\frac{4}{5}$x+$\frac{9}{5}$=$\frac{49}{5}$-$\frac{1}{5}$x£¬
¡ßCM+CN=$\frac{44}{5}$£¬
¡à$\frac{49}{5}$-$\frac{1}{5}$x=$\frac{44}{5}$£¬
¡àx=5£¬
¡àµ±DM=5ʱ£¬CM+CN=$\frac{44}{5}$£®
µãÆÀ ´ËÌâÊǼ¸ºÎ±ä»»×ÛºÏÌ⣬Ö÷Òª¿¼²éÁËÐýתµÄÐÔÖÊ£¬¾ØÐεÄÐÔÖÊ£¬¹´¹É¶¨Àí£¬Óù´¹É¶¨ÀíµÃµ½PM2=PD2+DM2£¬MN2=CM2+CN2ת»¯³öBN2+DM2=CM2+CN2ÊǽⱾÌâµÄ¹Ø¼ü£®