题目内容
4.分析 首先确定A、B、C三点向左平移2格,再向上平移4格的位置,再连接即可得到△A′B′C′.然后再根据网格作C′D′⊥A′B′,垂足为D′,再找出B′C′的中点E,再连接A′E即可.
解答 解:如图所示:
.
点评 此题主要考查了作图--平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
练习册系列答案
相关题目
14.两条直线相交所成的四个角都相等时,这两条直线的位置关系是( )
| A. | 平行 | B. | 相交 | C. | 垂直 | D. | 不能确定 |
12.
如图,圆柱底面半径为4cm,高为8cm,动点P从点A出发,沿着圆柱的侧面移动到点B的最短距离为( )
| A. | 2$\sqrt{{π}^{2}+4}$cm | B. | 4$\sqrt{{π}^{2}+4}cm$ | C. | 8$\sqrt{{π}^{2}+4}cm$ | D. | 无法确定 |
19.如果6m=a,那么我们称m为a的郎格数,记为m=f(a).有上述定义可知:6m=a和m=f(a)中的变量a与m所表示的关系为同一关系,并且有性质:若a、b均为正数,则f(ab)=f(a)+f(b),f($\frac{a}{b}$)=f(a)-f(b).
(1)根据郎格数的定义可得:
f(6)=1;f($\frac{1}{6}$)=-1;f($\frac{1}{36}$)=-2;
(2)根据郎格数的性质可得:
$①\frac{f({a}^{a})}{f(a)}$=a(a为正数)
②若f(2)=x(x≠0),则f(3)=1-x,f(4)=2x.
(3)若下表中与数a对应的郎格数f(a)有且只有一个是不正确的,请找出错误的郎格数,说明理由并改正.
(1)根据郎格数的定义可得:
f(6)=1;f($\frac{1}{6}$)=-1;f($\frac{1}{36}$)=-2;
(2)根据郎格数的性质可得:
$①\frac{f({a}^{a})}{f(a)}$=a(a为正数)
②若f(2)=x(x≠0),则f(3)=1-x,f(4)=2x.
(3)若下表中与数a对应的郎格数f(a)有且只有一个是不正确的,请找出错误的郎格数,说明理由并改正.
| a | 1.5 | 3 | 4 | 9 | 16 | 24 |
| f(a) | 2x+y | $\frac{1+2x+y}{2}$ | 1-2x-y | 1+2x+y | 2-4x-2y | -2x-y |