题目内容
考点:平行线的性质
专题:
分析:先根据三角形外角性质得∠BFD=∠E+∠D=63°,然后根据平行线的性质得到∠ABE=∠BFD=63°.
解答:解:
如图,
∵∠BFD=∠E+∠D,
而∠D=27°,∠E=36°,
∴∠BFD=36°+27°=63°,
∵AB∥CD,
∴∠ABE=∠BFD=63°.
故答案为:63°.
∵∠BFD=∠E+∠D,
而∠D=27°,∠E=36°,
∴∠BFD=36°+27°=63°,
∵AB∥CD,
∴∠ABE=∠BFD=63°.
故答案为:63°.
点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
练习册系列答案
相关题目
若a<b,则下列各式中一定正确的是( )
| A、ab<0 | B、ab>0 |
| C、a-b>0 | D、-a>-b |