题目内容
3.(1)如图1,已知△ABC为等边三角形,点M是BC上一点,点N是AC上一点,AM、BN相交于点Q,∠BAM=∠NBC,求证:∠BQM=60°;(2)将(1)中的“等边△ABC”分别改为图2中的正方形ABCD、图3中的正五边形ABCDE、图4中的正六边形ABCDEF、图5中的正n边形ABCD…,“点N是AC上一点”改为点N是CD上一点,其余条件不变,则∠BQM的度数分别是90°、108°、120°、$\frac{18{0}^{°}(n-2)}{n}$.
分析 (1)从图中不难得出△ABM≌△BCN,利用对应角相等,外角和定理可求∠BQM=60°;
(2)本题是变式拓展题,需要从证明△ABM≌△BCN中寻找解题方法.
解答 解:(1)∠BQM=60°.
在△ABM和△BCN中,
$\left\{\begin{array}{l}{∠BAM=∠CBN}\\{AB=BC}\\{∠ABC=∠C=6{0}^{°}}\end{array}\right.$.
∴△ABM≌△BCN.
∴∠BAM=∠CBN.
∴∠BQM=∠BAM+∠ABN=∠CBN+∠ABN=∠ABC=60°.
(2)理由同(1):正方形∠BQM=90°,正五边形∠BQM=108°,正六边形∠BQM=120°,正n边形∠BQM=$\frac{18{0}^{°}(n-2)}{n}$.
故答案为:90°,108°,120°,$\frac{18{0}^{°}(n-2)}{n}$.
点评 本题综合考查全等三角形、等边三角形和正多边形的有关知识.注意对三角形全等性质的运用及学会对问题的拓展.
练习册系列答案
相关题目
13.如果(x+2)(x-6)=x2+px+q,则p、q的值为( )
| A. | p=-4,q=-12 | B. | p=4,q=-12 | C. | p=-8,q=-12 | D. | p=8,q=12 |