ÌâÄ¿ÄÚÈÝ
Èçͼ£¨1£©£¬Õý·½ÐÎABCDµÄ¶¥µãB¡¢CÔÚË«ÇúÏßy=
ÉÏ£¬ÁíÁ½¸ö¶¥µãÔÚ×ø±êÖáÉÏ£¬
£¨1£©ÉèOA=a£¬OD=b£¬¢ÙÇëÖ±½Óд³öB¡¢CµÄ×ø±ê£¨ÓÃa¡¢b±íʾ£©£ºB£¨ £¬ £©£¬C£¨ £¬ £©£¬
¢ÚÇóÖ¤£ºa=b£¨ ¢ÙÖнáÂÛ¿ÉÖ±½ÓÓà £©£»
£¨2£©Èçͼ£¨2£©£¬×÷Õý·½ÐÎBFGH£¬ÇÒFÔÚxÖáÉÏ£¬HÔÚË«ÇúÏßÉÏ£¬µ±SÕý·½ÐÎBFGH=5ʱ£¬Çók£»
£¨3£©Èçͼ£¨3£©£¬×÷¾ØÐÎBFGH£¬ÇÒFÔÚxÖáÉÏ£¬HÔÚË«ÇúÏßÉÏ£¬BH£ºBF=2£º1£¬µ±S¾ØÐÎBFGH=17ʱ£¬
ÇëÖ±½Óд³ökµÄÖµ£®

| k |
| x |
£¨1£©ÉèOA=a£¬OD=b£¬¢ÙÇëÖ±½Óд³öB¡¢CµÄ×ø±ê£¨ÓÃa¡¢b±íʾ£©£ºB£¨
¢ÚÇóÖ¤£ºa=b£¨ ¢ÙÖнáÂÛ¿ÉÖ±½ÓÓà £©£»
£¨2£©Èçͼ£¨2£©£¬×÷Õý·½ÐÎBFGH£¬ÇÒFÔÚxÖáÉÏ£¬HÔÚË«ÇúÏßÉÏ£¬µ±SÕý·½ÐÎBFGH=5ʱ£¬Çók£»
£¨3£©Èçͼ£¨3£©£¬×÷¾ØÐÎBFGH£¬ÇÒFÔÚxÖáÉÏ£¬HÔÚË«ÇúÏßÉÏ£¬BH£ºBF=2£º1£¬µ±S¾ØÐÎBFGH=17ʱ£¬
ÇëÖ±½Óд³ökµÄÖµ£®
¿¼µã£º·´±ÈÀýº¯Êý×ÛºÏÌâ,È«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ,¹´¹É¶¨Àí,¾ØÐεÄÐÔÖÊ,Õý·½ÐεÄÐÔÖÊ,ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ
רÌ⣺×ÛºÏÌâ
·ÖÎö£º£¨1£©¢Ù¹ýµãC×÷CP¡ÍyÖáÓÚµãP£¬¹ýµãB×÷BQ¡ÍxÖáÓÚµãQ£¬Èçͼ£¨1£©£¬Ò×Ö¤¡÷CPD¡Õ¡÷DOA£¬¡÷DOA¡Õ¡÷AQB£¬ÔòÓÐPC=OD=AQ=b£¬PD=OA=BQ=a£¬¾Í¿ÉµÃµ½B¡¢CµÄ×ø±ê£»¢Ú°ÑB¡¢CÁ½µã×ø±ê´úÈëy=
£¬¼´¿ÉÖ¤µ½a=b£»
£¨2£©Éè¹ýµãBƽÐÐÓÚxÖáµÄÖ±ÏßÓë¹ýµãFƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãM¡¢Óë¹ýµãHƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãN£¬Èçͼ£¨2£©£¬ÔòÓÐMF=a£¬¡ÏFMB=¡ÏBNH=90¡ã£®Ò×Ö¤¡÷BMF¡Õ¡÷HNB£¬ÔòÓÐMF=NB=a£¬´Ó¶ø¿ÉµÃµ½xHΪ3a£¬ÔÙ¸ù¾ÝB¡¢HÔÚË«ÇúÏßy=
ÉÏ¿ÉÇóµÃyH=
£¬´Ó¶øÓÐNH=a-
=
£®ÓÉSÕý·½ÐÎBFGH=5¿ÉÇóµÃBH2=5£®ÔÚRt¡÷BNHÖиù¾Ý¹´¹É¶¨Àí¿ÉÇóµÃa2=
£¬ÓÉ´Ë¿ÉÇó³ökµÄÖµ£»
£¨3£©Éè¹ýµãBƽÐÐÓÚxÖáµÄÖ±ÏßÓë¹ýµãFƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãM¡¢Óë¹ýµãHƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãN£¬Èçͼ£¨3£©£¬ÔòÓÐMF=a£¬¡ÏFMB=¡ÏBNH=90¡ã£®Ò×Ö¤¡÷BMF¡×¡÷HNB£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃNB=2MF=2a£¬´Ó¶øµÃµ½xHΪ4a£¬ÔÙÓÉB¡¢HÔÚË«ÇúÏßy=
ÉϿɵÃyH=
£¬ÔòÓÐNH=a-
=
£®ÓÉS¾ØÐÎBFGH=17¿ÉµÃBH2=34£®ÔÚRt¡÷BNHÖиù¾Ý¹´¹É¶¨Àí¿ÉÇóµÃa2=8£¬ÓÉ´Ë¿ÉÇó³ökµÄÖµ£®
| k |
| x |
£¨2£©Éè¹ýµãBƽÐÐÓÚxÖáµÄÖ±ÏßÓë¹ýµãFƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãM¡¢Óë¹ýµãHƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãN£¬Èçͼ£¨2£©£¬ÔòÓÐMF=a£¬¡ÏFMB=¡ÏBNH=90¡ã£®Ò×Ö¤¡÷BMF¡Õ¡÷HNB£¬ÔòÓÐMF=NB=a£¬´Ó¶ø¿ÉµÃµ½xHΪ3a£¬ÔÙ¸ù¾ÝB¡¢HÔÚË«ÇúÏßy=
| k |
| x |
| 2a |
| 3 |
| 2a |
| 3 |
| a |
| 3 |
| 9 |
| 2 |
£¨3£©Éè¹ýµãBƽÐÐÓÚxÖáµÄÖ±ÏßÓë¹ýµãFƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãM¡¢Óë¹ýµãHƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãN£¬Èçͼ£¨3£©£¬ÔòÓÐMF=a£¬¡ÏFMB=¡ÏBNH=90¡ã£®Ò×Ö¤¡÷BMF¡×¡÷HNB£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃNB=2MF=2a£¬´Ó¶øµÃµ½xHΪ4a£¬ÔÙÓÉB¡¢HÔÚË«ÇúÏßy=
| k |
| x |
| a |
| 2 |
| a |
| 2 |
| a |
| 2 |
½â´ð£º½â£º£¨1£©¢ÙB£¨a+b£¬a£©¡¢Cb£¬a+b£©£®
½âÌâ˼·£º¹ýµãC×÷CP¡ÍyÖáÓÚµãP£¬¹ýµãB×÷BQ¡ÍxÖáÓÚµãQ£¬Èçͼ£¨1£©£¬

Ò×Ö¤¡÷CPD¡Õ¡÷DOA£¬¡÷DOA¡Õ¡÷AQB£¬ÔòÓÐPC=OD=AQ=b£¬PD=OA=BQ=a£¬
ËùÒÔB£¨a+b£¬a£©¡¢Cb£¬a+b£©£¬
¹Ê´ð°¸Îª£ºa+b¡¢a¡¢b¡¢a+b£»
¢ÚÖ¤Ã÷£º¡ßB¡¢CÔÚË«ÇúÏßy=
ÉÏ£¬
¡àk=a£¨a+b£©=b£¨a+b£©£®
¡ßa+b¡Ù0£¬
¡àa=b£»
£¨2£©Éè¹ýµãBƽÐÐÓÚxÖáµÄÖ±ÏßÓë¹ýµãFƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãM¡¢Óë¹ýµãHƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãN£¬Èçͼ£¨2£©£¬

ÔòÓÐMF=a£¬¡ÏFMB=¡ÏBNH=90¡ã£®
¡ßËıßÐÎBFGHÊÇÕý·½ÐΣ¬
¡àBF=BH£¬¡ÏFBH=90¡ã£¬
¡à¡ÏMBF=180¡ã-90¡ã-¡ÏNBH=90¡ã-¡ÏNBH=¡ÏNHB£®
ÔÚ¡÷BMFºÍ¡÷HNBÖУ¬
£¬
¡à¡÷BMF¡Õ¡÷HNB£¨SAS£©£¬
¡àMF=NB=a£¬
¡ßµãBµÄ×ø±êΪ£¨a+b£¬a£©¼´£¨2a£¬a£©£¬
¡àxH=2a+a=3a£¬
¡ßB¡¢HÔÚË«ÇúÏßy=
ÉÏ£¬
¡àk=2a2=3a•yH£¬
¡àyH=
£¬
¡àNH=a-
=
£®
¡ßSÕý·½ÐÎBFGH=5£¬
¡àBH2=5£®
ÔÚRt¡÷BNHÖУ¬
BH2=BN2+NH2=a2+£¨
£©2=5£®
¡àa2=
£¬
¡àk=2a2=9£»
£¨3£©kµÄֵΪ16£®
½âÌâ˼·£ºÉè¹ýµãBƽÐÐÓÚxÖáµÄÖ±ÏßÓë¹ýµãFƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãM¡¢Óë¹ýµãHƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãN£¬Èçͼ£¨3£©£¬

ÔòÓÐMF=a£¬¡ÏFMB=¡ÏBNH=90¡ã£®
Ò×Ö¤¡÷BMF¡×¡÷HNB£¬
ÓÉMF=a£¬BH£ºBF=2£º1¿ÉµÃNB=2MF=2a£¬
ÔòxH=2a+2a=4a£¬
ÓÉB¡¢HÔÚË«ÇúÏßy=
ÉϿɵÃyH=
£¬
ÔòÓÐNH=a-
=
£®
ÓÉS¾ØÐÎBFGH=17¿ÉµÃBH2=34£®
ÔÚRt¡÷BNHÖиù¾Ý¹´¹É¶¨Àí¿ÉÇóµÃa2=8£¬
Ôòk=2a2=16£®
½âÌâ˼·£º¹ýµãC×÷CP¡ÍyÖáÓÚµãP£¬¹ýµãB×÷BQ¡ÍxÖáÓÚµãQ£¬Èçͼ£¨1£©£¬
Ò×Ö¤¡÷CPD¡Õ¡÷DOA£¬¡÷DOA¡Õ¡÷AQB£¬ÔòÓÐPC=OD=AQ=b£¬PD=OA=BQ=a£¬
ËùÒÔB£¨a+b£¬a£©¡¢Cb£¬a+b£©£¬
¹Ê´ð°¸Îª£ºa+b¡¢a¡¢b¡¢a+b£»
¢ÚÖ¤Ã÷£º¡ßB¡¢CÔÚË«ÇúÏßy=
| k |
| x |
¡àk=a£¨a+b£©=b£¨a+b£©£®
¡ßa+b¡Ù0£¬
¡àa=b£»
£¨2£©Éè¹ýµãBƽÐÐÓÚxÖáµÄÖ±ÏßÓë¹ýµãFƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãM¡¢Óë¹ýµãHƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãN£¬Èçͼ£¨2£©£¬
ÔòÓÐMF=a£¬¡ÏFMB=¡ÏBNH=90¡ã£®
¡ßËıßÐÎBFGHÊÇÕý·½ÐΣ¬
¡àBF=BH£¬¡ÏFBH=90¡ã£¬
¡à¡ÏMBF=180¡ã-90¡ã-¡ÏNBH=90¡ã-¡ÏNBH=¡ÏNHB£®
ÔÚ¡÷BMFºÍ¡÷HNBÖУ¬
|
¡à¡÷BMF¡Õ¡÷HNB£¨SAS£©£¬
¡àMF=NB=a£¬
¡ßµãBµÄ×ø±êΪ£¨a+b£¬a£©¼´£¨2a£¬a£©£¬
¡àxH=2a+a=3a£¬
¡ßB¡¢HÔÚË«ÇúÏßy=
| k |
| x |
¡àk=2a2=3a•yH£¬
¡àyH=
| 2a |
| 3 |
¡àNH=a-
| 2a |
| 3 |
| a |
| 3 |
¡ßSÕý·½ÐÎBFGH=5£¬
¡àBH2=5£®
ÔÚRt¡÷BNHÖУ¬
BH2=BN2+NH2=a2+£¨
| a |
| 3 |
¡àa2=
| 9 |
| 2 |
¡àk=2a2=9£»
£¨3£©kµÄֵΪ16£®
½âÌâ˼·£ºÉè¹ýµãBƽÐÐÓÚxÖáµÄÖ±ÏßÓë¹ýµãFƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãM¡¢Óë¹ýµãHƽÐÐÓÚyÖáµÄÖ±Ïß½»ÓÚµãN£¬Èçͼ£¨3£©£¬
ÔòÓÐMF=a£¬¡ÏFMB=¡ÏBNH=90¡ã£®
Ò×Ö¤¡÷BMF¡×¡÷HNB£¬
ÓÉMF=a£¬BH£ºBF=2£º1¿ÉµÃNB=2MF=2a£¬
ÔòxH=2a+2a=4a£¬
ÓÉB¡¢HÔÚË«ÇúÏßy=
| k |
| x |
| a |
| 2 |
ÔòÓÐNH=a-
| a |
| 2 |
| a |
| 2 |
ÓÉS¾ØÐÎBFGH=17¿ÉµÃBH2=34£®
ÔÚRt¡÷BNHÖиù¾Ý¹´¹É¶¨Àí¿ÉÇóµÃa2=8£¬
Ôòk=2a2=16£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁË·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢È«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨Àí£¬Õý·½ÐεÄÐÔÖÊ¡¢¾ØÐεÄÐÔÖʵÈ֪ʶ£¬¹¹ÔìKÐÍÈ«µÈ¼°KÐÍÏàËÆÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
µãA£¨-2£¬3£©¹ØÓÚxÖáµÄ¶Ô³ÆµãA¡äµÄ×ø±êΪ£¨¡¡¡¡£©
| A¡¢£¨2£¬-3£© |
| B¡¢£¨-2£¬-3£© |
| C¡¢£¨-2£¬3£© |
| D¡¢£¨ 2£¬3£© |
ÏÂÁе÷²éÖÐÐèÒª×öÆÕ²éµÄÊÇ£¨¡¡¡¡£©
| A¡¢Á˽âÒ»ÅúÅÚµ¯µÄÃüÖо«¶È |
| B¡¢µ÷²éÈ«¹úÖÐѧÉúµÄÉÏÍøÇé¿ö |
| C¡¢Éó²éijÎÄÕÂÖеĴí±ð×Ö |
| D¡¢¿¼²éijÖÖÅ©×÷ÎïµÄ³¤ÊÆ |