题目内容

2.如图,AB切⊙O于点B,BC∥OA,交⊙O于点C,若∠OAB=30°,BC=6,则劣弧BC的长为2π.

分析 连接OB,OC,由AB为圆的切线,利用切线的性质得到三角形AOB为直角三角形,再由BC与OA平行,利用两直线平行内错角相等得到∠OBC为60度,又OB=OC,得到三角形BOC为等边三角形,确定出∠BOC为60度,利用弧长公式即可求出劣弧BC的长.

解答 解:连接OB,OC,
∵AB为圆O的切线,
∴∠ABO=90°,
在Rt△ABO中,∠OAB=30°,
∴∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又∵OB=OC,
∴△BOC为等边三角形,
∴∠BOC=60°,BO=CO=BC=6,
则劣弧BC长=$\frac{60×π×6}{180}$=2π.
答案为:2π.

点评 此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网